17 resultados para Action Potentials


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Several theories of the mechanisms linking perception and action require that the links are bidirectional, but there is a lack of consensus on the effects that action has on perception. We investigated this by measuring visual event-related brain potentials to observed hand actions while participants prepared responses that were spatially compatible (e.g., both were on the left side of the body) or incompatible and action type compatible (e.g., both were finger taps) or incompatible, with observed actions. An early enhanced processing of spatially compatible stimuli was observed, which is likely due to spatial attention. This was followed by an attenuation of processing for both spatially and action type compatible stimuli, likely to be driven by efference copy signals that attenuate processing of predicted sensory consequences of actions. Attenuation was not response-modality specific; it was found for manual stimuli when participants prepared manual and vocal responses, in line with the hypothesis that action control is hierarchically organized. These results indicate that spatial attention and forward model prediction mechanisms have opposite, but temporally distinct, effects on perception. This hypothesis can explain the inconsistency of recent findings on action-perception links and thereby supports the view that sensorimotor links are bidirectional. Such effects of action on perception are likely to be crucial, not only for the control of our own actions but also in sociocultural interaction, allowing us to predict the reactions of others to our own actions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Decadal predictions on timescales from one year to one decade are gaining importance since this time frame falls within the planning horizon of politics, economy and society. The present study examines the decadal predictability of regional wind speed and wind energy potentials in three generations of the MiKlip (‘Mittelfristige Klimaprognosen’) decadal prediction system. The system is based on the global Max-Planck-Institute Earth System Model (MPI-ESM), and the three generations differ primarily in the ocean initialisation. Ensembles of uninitialised historical and yearly initialised hindcast experiments are used to assess the forecast skill for 10 m wind speeds and wind energy output (Eout) over Central Europe with lead times from one year to one decade. With this aim, a statistical-dynamical downscaling (SDD) approach is used for the regionalisation. Its added value is evaluated by comparison of skill scores for MPI-ESM large-scale wind speeds and SDD-simulated regional wind speeds. All three MPI-ESM ensemble generations show some forecast skill for annual mean wind speed and Eout over Central Europe on yearly and multi-yearly time scales. This forecast skill is mostly limited to the first years after initialisation. Differences between the three ensemble generations are generally small. The regionalisation preserves and sometimes increases the forecast skills of the global runs but results depend on lead time and ensemble generation. Moreover, regionalisation often improves the ensemble spread. Seasonal Eout skills are generally lower than for annual means. Skill scores are lowest during summer and persist longest in autumn. A large-scale westerly weather type with strong pressure gradients over Central Europe is identified as potential source of the skill for wind energy potentials, showing a similar forecast skill and a high correlation with Eout anomalies. These results are promising towards the establishment of a decadal prediction system for wind energy applications over Central Europe.