22 resultados para Accumulation of snow
Resumo:
Models of snow processes in areas of possible large-scale change need to be site independent and physically based. Here, the accumulation and ablation of the seasonal snow cover beneath a fir canopy has been simulated with a new physically based snow-soil vegetation-atmosphere transfer scheme (Snow-SVAT) called SNOWCAN. The model was formulated by coupling a canopy optical and thermal radiation model to a physically based multilayer snow model. Simple representations of other forest effects were included. These include the reduction of wind speed and hence turbulent transfer beneath the canopy, sublimation of intercepted snow, and deposition of debris on the surface. This paper tests this new modeling approach fully at a fir site within Reynolds Creek Experimental Watershed, Idaho. Model parameters were determined at an open site and subsequently applied to the fir site. SNOWCAN was evaluated using measurements of snow depth, subcanopy solar and thermal radiation, and snowpack profiles of temperature, density, and grain size. Simulations showed good agreement with observations (e.g., fir site snow depth was estimated over the season with r(2) = 0.96), generally to within measurement error. However, the simulated temperature profiles were less accurate after a melt-freeze event, when the temperature discrepancy resulted from underestimation of the rate of liquid water flow and/or the rate of refreeze. This indicates both that the general modeling approach is applicable and that a still more complete representation of liquid water in the snowpack will be important.
Resumo:
Thirty‐three snowpack models of varying complexity and purpose were evaluated across a wide range of hydrometeorological and forest canopy conditions at five Northern Hemisphere locations, for up to two winter snow seasons. Modeled estimates of snow water equivalent (SWE) or depth were compared to observations at forest and open sites at each location. Precipitation phase and duration of above‐freezing air temperatures are shown to be major influences on divergence and convergence of modeled estimates of the subcanopy snowpack. When models are considered collectively at all locations, comparisons with observations show that it is harder to model SWE at forested sites than open sites. There is no universal “best” model for all sites or locations, but comparison of the consistency of individual model performances relative to one another at different sites shows that there is less consistency at forest sites than open sites, and even less consistency between forest and open sites in the same year. A good performance by a model at a forest site is therefore unlikely to mean a good model performance by the same model at an open site (and vice versa). Calibration of models at forest sites provides lower errors than uncalibrated models at three out of four locations. However, benefits of calibration do not translate to subsequent years, and benefits gained by models calibrated for forest snow processes are not translated to open conditions.
Resumo:
Field experiments were conducted over 3 years to assess the effect of a triazole fungicide programme, and additions of strobilurin fungicides to it, on nitrogen uptake, accumulation and partitioning in a range of winter wheat cultivars. Commensurate with delayed senescence, fungicide programmes, particularly when including strobilurins, improved grain yield through improvements in both crop biomass and harvest index, although the relationship with green area duration of the flag leaf (GFLAD) depended on year and in some cases, cultivar. In all years fungicide treatments significantly increased the amount of nitrogen in the above-ground biomass, the amount of nitrogen in the grain and the nitrogen harvest index. All these effects could be linearly related to the fungicide effect on GFLAD. These relationships occasionally interacted with cultivar but there was no evidence that fungicide mode of action affected the relationship between GFLAD and yield of nitrogen in the grain. Fungicide treatments significantly reduced the amount of soil mineral N at harvest and when severe disease had been controlled, the net remobilization of N from the vegetation to the grain after anthesis. Fungicide maintained the filling of grain with both dry matter and nitrogen. The proportionate accumulation of nitrogen in the grain was later than that of dry matter and this difference was greater when fungicide had been applied. Effects of fungicide on grain protein concentration and its relationship with GFLAD were inconsistent over year and cultivar. There were several instances where grain protein concentration was unaffected despite large (1(.)5 t/ha) increases in grain yield following fungicide use. Dilution of grain protein concentration following fungicide use, when it did occur, was small compared with what would be predicted by adoption of other yield increasing techniques such as the selection of high yielding cultivars (based on currently available cultivars) or by growing wheat in favourable climates.
Resumo:
Estimating snow mass at continental scales is difficult but important for understanding landatmosphere interactions, biogeochemical cycles and Northern latitudes’ hydrology. Remote sensing provides the only consistent global observations, but the uncertainty in measurements is poorly understood. Existing techniques for the remote sensing of snow mass are based on the Chang algorithm, which relates the absorption of Earth-emitted microwave radiation by a snow layer to the snow mass within the layer. The absorption also depends on other factors such as the snow grain size and density, which are assumed and fixed within the algorithm. We examine the assumptions, compare them to field measurements made at the NASA Cold Land Processes Experiment (CLPX) Colorado field site in 2002–3, and evaluate the consequences of deviation and variability for snow mass retrieval. The accuracy of the emission model used to devise the algorithm also has an impact on its accuracy, so we test this with the CLPX measurements of snow properties against SSM/I and AMSR-E satellite measurements.
Resumo:
Estimating snow mass at continental scales is difficult, but important for understanding land-atmosphere interactions, biogeochemical cycles and the hydrology of the Northern latitudes. Remote sensing provides the only consistent global observations, butwith unknown errors. Wetest the theoretical performance of the Chang algorithm for estimating snow mass from passive microwave measurements using the Helsinki University of Technology (HUT) snow microwave emission model. The algorithm's dependence upon assumptions of fixed and uniform snow density and grainsize is determined, and measurements of these properties made at the Cold Land Processes Experiment (CLPX) Colorado field site in 2002–2003 used to quantify the retrieval errors caused by differences between the algorithm assumptions and measurements. Deviation from the Chang algorithm snow density and grainsize assumptions gives rise to an error of a factor of between two and three in calculating snow mass. The possibility that the algorithm performsmore accurately over large areas than at points is tested by simulating emission from a 25 km diameter area of snow with a distribution of properties derived from the snow pitmeasurements, using the Chang algorithm to calculate mean snow-mass from the simulated emission. The snowmass estimation froma site exhibiting the heterogeneity of the CLPX Colorado site proves onlymarginally different than that from a similarly-simulated homogeneous site. The estimation accuracy predictions are tested using the CLPX field measurements of snow mass, and simultaneous SSM/I and AMSR-E measurements.
Resumo:
The surface mass balance for Greenland and Antarctica has been calculated using model data from an AMIP-type experiment for the period 1979–2001 using the ECHAM5 spectral transform model at different triangular truncations. There is a significant reduction in the calculated ablation for the highest model resolution, T319 with an equivalent grid distance of ca 40 km. As a consequence the T319 model has a positive surface mass balance for both ice sheets during the period. For Greenland, the models at lower resolution, T106 and T63, on the other hand, have a much stronger ablation leading to a negative surface mass balance. Calculations have also been undertaken for a climate change experiment using the IPCC scenario A1B, with a T213 resolution (corresponding to a grid distance of some 60 km) and comparing two 30-year periods from the end of the twentieth century and the end of the twenty-first century, respectively. For Greenland there is change of 495 km3/year, going from a positive to a negative surface mass balance corresponding to a sea level rise of 1.4 mm/year. For Antarctica there is an increase in the positive surface mass balance of 285 km3/year corresponding to a sea level fall by 0.8 mm/year. The surface mass balance changes of the two ice sheets lead to a sea level rise of 7 cm at the end of this century compared to end of the twentieth century. Other possible mass losses such as due to changes in the calving of icebergs are not considered. It appears that such changes must increase significantly, and several times more than the surface mass balance changes, if the ice sheets are to make a major contribution to sea level rise this century. The model calculations indicate large inter-annual variations in all relevant parameters making it impossible to identify robust trends from the examined periods at the end of the twentieth century. The calculated inter-annual variations are similar in magnitude to observations. The 30-year trend in SMB at the end of the twenty-first century is significant. The increase in precipitation on the ice sheets follows closely the Clausius-Clapeyron relation and is the main reason for the increase in the surface mass balance of Antarctica. On Greenland precipitation in the form of snow is gradually starting to decrease and cannot compensate for the increase in ablation. Another factor is the proportionally higher temperature increase on Greenland leading to a larger ablation. It follows that a modest increase in temperature will not be sufficient to compensate for the increase in accumulation, but this will change when temperature increases go beyond any critical limit. Calculations show that such a limit for Greenland might well be passed during this century. For Antarctica this will take much longer and probably well into following centuries.
Resumo:
Snow provides large seasonal storage of freshwater, and information about the distribution of snow mass as Snow Water Equivalent (SWE) is important for hydrological planning and detecting climate change impacts. Large regional disagreements remain between estimates from reanalyses, remote sensing and modelling. Assimilating passive microwave information improves SWE estimates in many regions but the assimilation must account for how microwave scattering depends on snow stratigraphy. Physical snow models can estimate snow stratigraphy, but users must consider the computational expense of model complexity versus acceptable errors. Using data from the National Aeronautics and Space Administration Cold Land Processes Experiment (NASA CLPX) and the Helsinki University of Technology (HUT) microwave emission model of layered snowpacks, it is shown that simulations of the brightness temperature difference between 19 GHz and 37 GHz vertically polarised microwaves are consistent with Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E) and Special Sensor Microwave Imager (SSM/I) retrievals once known stratigraphic information is used. Simulated brightness temperature differences for an individual snow profile depend on the provided stratigraphic detail. Relative to a profile defined at the 10 cm resolution of density and temperature measurements, the error introduced by simplification to a single layer of average properties increases approximately linearly with snow mass. If this brightness temperature error is converted into SWE using a traditional retrieval method then it is equivalent to ±13 mm SWE (7% of total) at a depth of 100 cm. This error is reduced to ±5.6 mm SWE (3 % of total) for a two-layer model.