18 resultados para Abbey, Edwin Austin, 1852-1911
Resumo:
The internal variability and coupling between the stratosphere and troposphere in CCMVal‐2 chemistry‐climate models are evaluated through analysis of the annular mode patterns of variability. Computation of the annular modes in long data sets with secular trends requires refinement of the standard definition of the annular mode, and a more robust procedure that allows for slowly varying trends is established and verified. The spatial and temporal structure of the models’ annular modes is then compared with that of reanalyses. As a whole, the models capture the key features of observed intraseasonal variability, including the sharp vertical gradients in structure between stratosphere and troposphere, the asymmetries in the seasonal cycle between the Northern and Southern hemispheres, and the coupling between the polar stratospheric vortices and tropospheric midlatitude jets. It is also found that the annular mode variability changes little in time throughout simulations of the 21st century. There are, however, both common biases and significant differences in performance in the models. In the troposphere, the annular mode in models is generally too persistent, particularly in the Southern Hemisphere summer, a bias similar to that found in CMIP3 coupled climate models. In the stratosphere, the periods of peak variance and coupling with the troposphere are delayed by about a month in both hemispheres. The relationship between increased variability of the stratosphere and increased persistence in the troposphere suggests that some tropospheric biases may be related to stratospheric biases and that a well‐simulated stratosphere can improve simulation of tropospheric intraseasonal variability.
Resumo:
This volume reports on the results of the Glastonbury Abbey Archaeological Archive Project, a collaboration between the University of Reading and the Trustees of Glastonbury Abbey, funded principally by the Arts and Humanities Research Council. The project has reassessed and reinterpreted all known archaeological records from the 1908–79 excavations and made the complete dataset available to the public through a digital archive hosted by the Archaeology Data Service (http://dx.doi.org/10.5284/1022585). The scope of the project has included the full analysis of the archaeological collections of Glastonbury Abbey by thirty-one leading specialists, including chemical and compositional analysis of glass and metal and petrological analysis of pottery and tile, and a comprehensive geophysical survey conducted by GSB Prospection Ltd. For the first time, it has been possible to achieve a framework of independent dating based on reassessment of the finds and radiocarbon dating of surviving organic material from the 1950s excavations. The principal aim of the Glastonbury Abbey Archaeological Project was to set aside previous assumptions based on the historical and legendary traditions and to provide a rigorous reassessment of the archive of antiquarian excavations. This research has revealed that some of the best known archaeological ‘facts’ about Glastonbury are themselves myths perpetuated by the abbey’s excavators.