26 resultados para ATLANTIC SST
Resumo:
Current state-of-the-art climate models fail to capture accurately the path of the Gulf Stream and North Atlantic Current. This leads to a warm bias near the North American coast, where the modelled Gulf Stream separates from the coast further north, and a cold anomaly to the east of the Grand Banks of Newfoundland, where the North Atlantic Current remains too zonal in this region. Using an atmosphere-only model forced with the sea surface temperature (SST) biases in the North Atlantic, we consider the impact they have on the mean state and the variability in the North Atlantic European region in winter. Our results show that the SST errors produce a mean sea-level pressure response that is similar in magnitude and pattern to the atmospheric circulation errors in the coupled climate model. The work also suggests that errors in the coupled model storm tracks and North Atlantic Oscillation, compared to reanalysis data, can also be explained partly by these SST errors. Our results suggest that both the error in the Gulf Stream separation location and the path of the North Atlantic Current around the Grand Banks play important roles in affecting the atmospheric circulation. Reducing these coupled model errors could improve significantly the representation of the large-scale atmospheric circulation of the North Atlantic and European region.
Resumo:
In the mid 1990s the North Atlantic subpolar gyre (SPG) warmed rapidly, with sea surface temperatures (SST) increasing by 1°C in just a few years. By examining initialized hindcasts made with the UK Met Office Decadal Prediction System (DePreSys), it is shown that the warming could have been predicted. Conversely, hindcasts that only consider changes in radiative forcings are not able to capture the rapid warming. Heat budget analysis shows that the success of the DePreSys hindcasts is due to the initialization of anomalously strong northward ocean heat transport. Furthermore, it is found that initializing a strong Atlantic circulation, and in particular a strong Atlantic Meridional Overturning Circulation, is key for successful predictions. Finally, we show that DePreSys is able to predict significant changes in SST and other surface climate variables related to the North Atlantic warming.
Resumo:
Atlantic Multidecadal Variability (AMV) is investigated in a millennial control simulation with the Kiel Climate Model (KCM), a coupled atmosphere–ocean–sea ice model. An oscillatory mode with approximately 60 years period and characteristics similar to observations is identified with the aid of three-dimensional temperature and salinity joint empirical orthogonal function analysis. The mode explains 30 % of variability on centennial and shorter timescales in the upper 2,000 m of the North Atlantic. It is associated with changes in the Atlantic Meridional Overturning Circulation (AMOC) of ±1–2 Sv and Atlantic Sea Surface Temperature (SST) of ±0.2 °C. AMV in KCM results from an out-of-phase interaction between horizontal and vertical ocean circulation, coupled through Irminger Sea convection. Wintertime convection in this region is mainly controlled by salinity anomalies transported by the Subpolar Gyre (SPG). Increased (decreased) dense water formation in this region leads to a stronger (weaker) AMOC after 15 years, and this in turn leads to a weaker (stronger) SPG after another 15 years. The key role of salinity variations in the subpolar North Atlantic for AMV is confirmed in a 1,000 year long simulation with salinity restored to model climatology: No low frequency variations in convection are simulated, and the 60 year mode of variability is absent.
Resumo:
The warm event which spread in the tropical Atlantic during Spring-Summer 1984 is assumed to be partially initiated by atmospheric disturbances, themselves related to the major 1982–1983 El-Niño which occurred 1 year earlier in the Pacific. This paper tests such an hypothesis. For that purpose, an atmospheric general circulation model (AGCM) is forced by different conditions of climatic and observed sea surface temperature and an Atlantic ocean general circulation model (OGCM) is subsequently forced by the outputs of the AGCM. It is firstly shown that both the AGCM and the OGCM correctly behave when globally observed SST are used: the strengthening of the trades over the tropical Atlantic during 1983 and their subsequent weakening at the beginning of 1984 are well captured by the AGCM, and so is the Spring 1984 deepening of the thermocline in the eastern equatorial Atlantic, simulated by the OGCM. As assumed, the SST anomalies located in the El-Niño Pacific area are partly responsible for wind signal anomaly in the tropical Atlantic. Though this remotely forced atmospheric signal has a small amplitude, it can generate, in the OGCM run, an anomalous sub-surface signal leading to a flattening of the thermocline in the equatorial Atlantic. This forced oceanic experiment cannot explain the amplitude and phase of the observed sub-surface oceanic anomaly: part of the Atlantic ocean response, due to local interaction between ocean and atmosphere, requires a coupled approach. Nevertheless this experiment showed that anomalous conditions in the Pacific during 82–83 created favorable conditions for anomaly development in the Atlantic.
Resumo:
Identifying the prime drivers of the twentieth-century multidecadal variability in the Atlantic Ocean is crucial for predicting how the Atlantic will evolve in the coming decades and the resulting broad impacts on weather and precipitation patterns around the globe. Recently, Booth et al. showed that the Hadley Centre Global Environmental Model, version 2, Earth system configuration (HadGEM2-ES) closely reproduces the observed multidecadal variations of area-averaged North Atlantic sea surface temperature in the twentieth century. The multidecadal variations simulated in HadGEM2-ES are primarily driven by aerosol indirect effects that modify net surface shortwave radiation. On the basis of these results, Booth et al. concluded that aerosols are a prime driver of twentieth-century North Atlantic climate variability. However, here it is shown that there are major discrepancies between the HadGEM2-ES simulations and observations in the North Atlantic upper-ocean heat content, in the spatial pattern of multidecadal SST changes within and outside the North Atlantic, and in the subpolar North Atlantic sea surface salinity. These discrepancies may be strongly influenced by, and indeed in large part caused by, aerosol effects. It is also shown that the aerosol effects simulated in HadGEM2-ES cannot account for the observed anticorrelation between detrended multidecadal surface and subsurface temperature variations in the tropical North Atlantic. These discrepancies cast considerable doubt on the claim that aerosol forcing drives the bulk of this multidecadal variability.
Resumo:
In response to a substantial weakening of the Atlantic Meridional Overturning Circulation (AMOC)— from a coupled ocean–atmosphere general circulation model experiment—significant changes in the interannual variability are found over the tropical Atlantic, characterized by an increase of variance (by ~150 %) in boreal late spring-early summer and a decrease of variance (by ~60 %) in boreal autumn. This study focuses on understanding physical mechanisms responsible for these changes in interannual variability in the tropical Atlantic. It demonstrates that the increase of variability in spring is a consequence of an increase in the variance of the El Niño-Southern Oscillation, which has a large impact on the tropical Atlantic via anomalous surface heat fluxes. Winter El Niño (La Niña) affects the eastern equatorial Atlantic by decreasing (increasing) cloud cover and surface wind speed which is associated with anomalous downward (upward) short wave radiation and reduced (enhanced) upward latent heat fluxes, creating anomalous positive (negative) sea surface temperature (SST) anomalies over the region from winter to spring. On the other hand, the decrease of SST variance in autumn is due to a deeper mean thermocline which weakens the impact of the thermocline movement on SST variation. The comparison between the model results and observations is not straightforward owing to the influence of model biases and the lack of a major MOC weakening event in the instrumental record. However, it is argued that the basic physical mechanisms found in the model simulations are likely to be robust and therefore have relevance to understanding tropical Atlantic variability in the real world, perhaps with modified seasonality.
Resumo:
The effect of diurnal variations in sea surface temperature (SST) on the air-sea flux of CO2 over the central Atlantic ocean and Mediterranean Sea (60 S–60 N, 60 W–45 E) is evaluated for 2005–2006. We use high spatial resolution hourly satellite ocean skin temperature data to determine the diurnal warming (ΔSST). The CO2 flux is then computed using three different temperature fields – a foundation temperature (Tf, measured at a depth where there is no diurnal variation), Tf, plus the hourly ΔSST and Tf, plus the monthly average of the ΔSSTs. This is done in conjunction with a physically-based parameterisation for the gas transfer velocity (NOAA-COARE). The differences between the fluxes evaluated for these three different temperature fields quantify the effects of both diurnal warming and diurnal covariations. We find that including diurnal warming increases the CO2 flux out of this region of the Atlantic for 2005–2006 from 9.6 Tg C a−1 to 30.4 Tg C a−1 (hourly ΔSST) and 31.2 Tg C a−1 (monthly average of ΔSST measurements). Diurnal warming in this region, therefore, has a large impact on the annual net CO2 flux but diurnal covariations are negligible. However, in this region of the Atlantic the uptake and outgassing of CO2 is approximately balanced over the annual cycle, so although we find diurnal warming has a very large effect here, the Atlantic as a whole is a very strong carbon sink (e.g. −920 Tg C a−1 Takahashi et al., 2002) making this is a small contribution to the Atlantic carbon budget.
Resumo:
To study the transient atmospheric response to midlatitude SST anomalies, a three-layer quasigeostrophic (QG) model coupled to a slab oceanic mixed layer in the North Atlantic is used. As diagnosed from a coupled run in perpetual winter conditions, the first two modes of SST variability are linked to the model North Atlantic Oscillation (NAO) and eastern Atlantic pattern (EAP), respectively, the dominant atmospheric modes in the Atlantic sector. The two SST anomaly patterns are then prescribed as fixed anomalous boundary conditions for the model atmosphere, and its transient responses are established from a large ensemble of simulations. In both cases, the tendency of the air–sea heat fluxes to damp the SST anomalies results in an anomalous diabatic heating of the atmosphere that, in turn, forces a baroclinic response, as predicted by linear theory. This initial response rapidly modifies the transient eddy activity and thus the convergence of eddy momentum and heat fluxes. The latter transforms the baroclinic response into a growing barotropic one that resembles the atmospheric mode that had created the SST anomaly in the coupled run and is thus associated with a positive feedback. The total adjustment time is as long as 3–4 months for the NAO-like response and 1–2 months for the EAP-like one. The positive feedback, in both cases, is dependent on the polarity of the SST anomaly, but is stronger in the NAO case, thereby contributing to its predominance at low frequency in the coupled system. However, the feedback is too weak to lead to an instability of the atmospheric modes and primarily results in an increase of their amplitude and persistence and a weakening of the heat flux damping of the SST anomaly.
Resumo:
In winter of 2009–2010 south-western Europe was hit by several destructive windstorms. The most important was Xynthia (26–28 February 2010), which caused 64 reported casualties and was classified as the 2nd most expensive natural hazard event for 2010 in terms of economic losses. In this work we assess the synoptic evolution, dynamical characteristics and the main impacts of storm Xynthia, whose genesis, development and path were very uncommon. Wind speed gusts observed at more than 500 stations across Europe are evaluated as well as the wind gust field obtained with a regional climate model simulation for the entire North Atlantic and European area. Storm Xynthia was first identified on 25 February around 30° N, 50° W over the subtropical North Atlantic Ocean. Its genesis occurred on a region characterized by warm and moist air under the influence of a strong upper level wave embedded in the westerlies. Xynthia followed an unusual SW–NE path towards Iberia, France and central Europe. The role of moist air masses on the explosive development of Xynthia is analysed by considering the evaporative sources. A lagrangian model is used to identify the moisture sources, sinks and moisture transport associated with the cyclone during its development phase. The main supply of moisture is located over an elongated region of the subtropical North Atlantic Ocean with anomalously high SST, confirming that the explosive development of storm Xynthia had a significant contribution from the subtropics.
Resumo:
In the 1960s North Atlantic sea surface temperatures (SST) cooled rapidly. The magnitude of the cooling was largest in the North Atlantic subpolar gyre (SPG), and was coincident with a rapid freshening of the SPG. Here we analyze hindcasts of the 1960s North Atlantic cooling made with the UK Met Office’s decadal prediction system (DePreSys), which is initialised using observations. It is shown that DePreSys captures—with a lead time of several years—the observed cooling and freshening of the North Atlantic SPG. DePreSys also captures changes in SST over the wider North Atlantic and surface climate impacts over the wider region, such as changes in atmospheric circulation in winter and sea ice extent. We show that initialisation of an anomalously weak Atlantic Meridional Overturning Circulation (AMOC), and hence weak northward heat transport, is crucial for DePreSys to predict the magnitude of the observed cooling. Such an anomalously weak AMOC is not captured when ocean observations are not assimilated (i.e. it is not a forced response in this model). The freshening of the SPG is also dominated by ocean salt transport changes in DePreSys; in particular, the simulation of advective freshwater anomalies analogous to the Great Salinity Anomaly were key. Therefore, DePreSys suggests that ocean dynamics played an important role in the cooling of the North Atlantic in the 1960s, and that this event was predictable.
Resumo:
The transient atmospheric response to interactive SST anomalies in the midlatitudes is investigated using a three-layer QG model coupled in perpetual winter conditions to a slab oceanic mixed layer in the North Atlantic. The SST anomalies are diagnosed from a coupled run and prescribed as initial conditions, but are free to evolve. The initial evolution of the atmospheric response is similar to that obtained with a prescribed SST anomaly, starting as a quasi-linear baroclinic and then quickly evolving into a growing equivalent barotropic one. Because of the heat flux damping, the SST anomaly amplitude slowly decreases, albeit with little change in pattern. Correspondingly, the atmospheric response only increases until it reaches a maximum amplitude after about 1–3.5 months, depending on the SST anomaly considered. The response is similar to that at equilibrium in the fixed SST case, but it is 1.5–2 times smaller, and then slowly decays away.