17 resultados para AL(OH)3


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Two tridentate Schiff bases, HL1(6-amino-3-methyl-1-phenyl-4-azahex-2-en-1-one), and HL2 (6-atnino-3,6-dimethyl-1-phenyl-4-azahex-2-en-1-one) on reaction with Cu(II) perchlorate in the presence of triethyl amine yielded two new trinuclear copper(II) complexes, [(CuL1)(3)(mu(3)-OH)](ClO4)(2) (1) and [(CuL2)(3)(mu(3)-OH)](ClO4)(2) center dot 0.75H(2)O (2), whereas another tridentate ligand HL3 (7-amino-3-methyl-1-phenyl-4-azahept-2-en-1-one) underwent hydrolysis under the same reaction conditions to result in the formation of a mononuclear complex, [Cu(bn)(pn)ClO4] (3) [where bn = 1-benzoylacetonate and pn = 1,3-propanediamine]. All three complexes have been characterized by X-ray crystallography. For both 1 and 2 the cationic part is trinuclear with a [Cu3OH] core held by three carbonyl oxygen bridges between each pair of copper(II) atoms. The structure of 3 is a monomer with a chelating 1,3-propanediamine and a benzoyl acetone moiety. Magnetic measurements of I and 2 have been performed in the 2-300 K temperature range. The experimental data could be satisfactorily reproduced by using an isotropic exchange model, H = -J(S1S2 + S2S3 + S1S3), yielding as best fit parameters: J = -25.6 cm(-1), g = 2.21 for 1 and J = 11.2 cm(-1), g = 2.10 for 2. The EPR spectra at low temperature could be indicative of spin frustration in complex 1. (C) 2006 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Kagome lattice, comprising a two-dimensional array of corner-sharing equilateral triangles, is central to the exploration of magnetic frustration. In such a lattice, antiferromagnetic coupling between ions in triangular plaquettes prevents all of the exchange interactions being simultaneously satisfied and a variety of novel magnetic ground states may result at low temperature. Experimental realization of a Kagome lattice remains difficult. The jarosite family of materials of nominal composition AM3(SO4)2(OH)6 (A = monovalent cation; M= Fe3+, Cr3+), offers perhaps one of the most promising manifestations of the phenomenon of magnetic frustration in two dimensions. The magnetic properties of jarosites are however extremely sensitive to the degree of coverage of magnetic sites. Consequently, there is considerable interest in the use of soft chemical techniques for the design and synthesis of novel materials in which to explore the effects of spin, degree of site coverage and connectivity on magnetic frustration.