25 resultados para AGED 0-14 YEARS
Resumo:
Background: The characterization of phytoestrogen intake and cancer risk has been hindered by the absence of accurate dietary phytoestrogen values. Objective: We examined the risk of breast, colorectal, and prostate cancers relative to phytoestrogen intake on the basis of a comprehensive database. Design: Demographic and anthropometric characteristics, a medical history, and 7-d records of diet were collected prospectively from participants (aged 40–79 y) in the European Prospective Investigation into Cancer and Nutrition–Norfolk (EPIC-Norfolk). Five hundred nine food items were analyzed by liquid chromatography–mass spectrometry/mass spectrometry, and 13C3-labeled internal standards were analyzed for isoflavones (genistein, daidzein, glycitein, biochanin A, and formononetin), lignans (secoisolariciresinol and matairesinol), and enterolignans from gut microbial metabolism in animal food sources (equol and enterolactone). From the direct analysis, values for 10,708 foods were calculated. Odds ratios (ORs) for breast (244 cases, 941 controls), colorectal (221 cases, 886 controls), and prostate (204 cases, 812 controls) cancers were calculated relative to phytoestrogen intake. Results: Phytoestrogen intake was not associated with breast cancer among women or colorectal cancer among men. Among women, colorectal cancer risk was inversely associated with enterolactone (OR: 0.33; 95% CI: 0.14, 0.74) and total enterolignans (OR: 0.32; 95% CI: 0.13, 0.79), with a positive trend detected for secoisolariciresinol (OR: 1.60; 95% CI: 0.96, 2.69). A positive trend between enterolignan intake and prostate cancer risk (OR: 1.27; 95% CI: 0.97, 1.66) was attenuated after adjustment for dairy intake (OR: 1.19; 95% CI: 0.77, 1.82). Conclusion: Dietary phytoestrogens may contribute to the risk of colorectal cancer among women and prostate cancer among men.
Resumo:
Epidemiological studies indicate that diets rich in fruits and vegetables (F&V) are protective against cardiovascular diseases (CVD). Pureed F&V products retain many beneficial components, including flavonoids, carotenoids, vitamin C and dietary fibres. This study aimed to establish the physiological effects of acute ingestion of F&V puree-based drink (FVPD) on vasodilation, antioxidant status, phytochemical bioavailability and other CVD risk factors. 24 Subjects, aged 30-70 years, completed the randomised, single-blind, controlled, crossover test meal study. Subjects consumed 400 ml FVPD, or fruit-flavoured sugar-matched control, after following a low-flavonoid diet for 5 days. Blood and urine samples were collected throughout the study day and vascular reactivity was assessed at 90-minute intervals using laser Doppler iontophoresis (LDI). FVPD significantly increased plasma vitamin C (P=0.002) and total nitrate/nitrite (P=0.001) concentrations. There was a near significant time by treatment effect on ex vivo LDL oxidation (P=0.068), with a longer lag phase after consuming FVPD. During the 6 hours after juice consumption the antioxidant capacity of plasma increased significantly (P=0.003) and there was a simultaneous increase in plasma and urinary phenolic metabolites (P<0.05). There were significantly lower glucose and insulin peaks after ingestion of FVPD compared with control (P=0.019 and P=0.003) and a trend towards increased endothelium-dependent vasodilation following FVPD consumption (P=0.061). Overall, FVPD consumption significantly increased plasma vitamin C and total nitrate/nitrite concentrations, with a trend towards increased endothelium-dependent vasodilation. Pureed F&V products are useful vehicles for increasing micronutrient status, plasma antioxidant capacity and in vivo NO generation, which may contribute to CVD risk reduction.
Resumo:
Background and aims: Arterial stiffness is an independent predictor of cardiovascular disease (CVD) events and all-cause mortality and may be differentially affected by dietary fatty acid (FA) intake. The aim of this study was to investigate the relationship between FA consumption and arterial stiffness and blood pressure in a community-based population. Methods and results: The Caerphilly Prospective Study recruited 2398 men, aged 45-59 years, who were followed up at 5-year intervals for a mean of 17.8-years (n 787). A semi-quantitative food frequency questionnaire estimated intakes of total, saturated, mono- and poly-unsaturated fatty acids (SFA, MUFA, PUFA). Multiple regression models investigated associations between intakes of FA at baseline with aortic pulse wave velocity (aPWV), augmentation index (AIx), systolic and diastolic blood pressure (SBP, DBP) and pulse pressure after a 17.8-year follow-up - as well as cross-sectional relationships with metabolic markers. After adjustment, higher SFA consumption at baseline was associated with higher SBP (P = 0.043) and DBP (P = 0.002) and after a 17.8-year follow-up was associated with a 0.51 m/s higher aPWV (P = 0.006). After adjustment, higher PUFA consumption at baseline was associated with lower SBP (P = 0.022) and DBP (P = 0.036) and after a 17.8-year follow-up was associated with a 0.63 m/s lower aPWV (P = 0.007). Conclusion: This study suggests that consumption of SFA and PUFA have opposing effects on arterial stiffness and blood pressure. Importantly, this study suggests that consumption of FA is an important risk factor for arterial stiffness and CVD.
Resumo:
The present research aimed to comprehensively explore psychopathology in Williams syndrome (WS) across the lifespan and evaluate the relationship between psychopathology and age category (child or adult), gender and cognitive ability. The parents of 50 participants with WS, aged 6-50 years, were interviewed using the Schedule for Affective Disorders and Schizophrenia for School-Age Children (K-SADS-PL). The prevalence of a wide range of Axis I DSM-IV disorders was assessed. In addition to high rates of anxiety and Attention Deficit Hyperactivity Disorder (ADHD) (38% and 20% respectively), 14% of our sample met criteria for a depressive disorder and 42% of participants were not experiencing any significant psychopathological difficulties. There was some evidence for different patterns of psychopathology between children and adults with WS and between males and females. These relationships were largely in keeping with those found in the typically developing population, thus supporting the validity of applying theory and treatment approaches for psychopathology in the typically developing population to WS.
Resumo:
Aerosols affect the Earth's energy budget directly by scattering and absorbing radiation and indirectly by acting as cloud condensation nuclei and, thereby, affecting cloud properties. However, large uncertainties exist in current estimates of aerosol forcing because of incomplete knowledge concerning the distribution and the physical and chemical properties of aerosols as well as aerosol-cloud interactions. In recent years, a great deal of effort has gone into improving measurements and datasets. It is thus feasible to shift the estimates of aerosol forcing from largely model-based to increasingly measurement-based. Our goal is to assess current observational capabilities and identify uncertainties in the aerosol direct forcing through comparisons of different methods with independent sources of uncertainties. Here we assess the aerosol optical depth (τ), direct radiative effect (DRE) by natural and anthropogenic aerosols, and direct climate forcing (DCF) by anthropogenic aerosols, focusing on satellite and ground-based measurements supplemented by global chemical transport model (CTM) simulations. The multi-spectral MODIS measures global distributions of aerosol optical depth (τ) on a daily scale, with a high accuracy of ±0.03±0.05τ over ocean. The annual average τ is about 0.14 over global ocean, of which about 21%±7% is contributed by human activities, as estimated by MODIS fine-mode fraction. The multi-angle MISR derives an annual average AOD of 0.23 over global land with an uncertainty of ~20% or ±0.05. These high-accuracy aerosol products and broadband flux measurements from CERES make it feasible to obtain observational constraints for the aerosol direct effect, especially over global the ocean. A number of measurement-based approaches estimate the clear-sky DRE (on solar radiation) at the top-of-atmosphere (TOA) to be about -5.5±0.2 Wm-2 (median ± standard error from various methods) over the global ocean. Accounting for thin cirrus contamination of the satellite derived aerosol field will reduce the TOA DRE to -5.0 Wm-2. Because of a lack of measurements of aerosol absorption and difficulty in characterizing land surface reflection, estimates of DRE over land and at the ocean surface are currently realized through a combination of satellite retrievals, surface measurements, and model simulations, and are less constrained. Over the oceans the surface DRE is estimated to be -8.8±0.7 Wm-2. Over land, an integration of satellite retrievals and model simulations derives a DRE of -4.9±0.7 Wm-2 and -11.8±1.9 Wm-2 at the TOA and surface, respectively. CTM simulations derive a wide range of DRE estimates that on average are smaller than the measurement-based DRE by about 30-40%, even after accounting for thin cirrus and cloud contamination. A number of issues remain. Current estimates of the aerosol direct effect over land are poorly constrained. Uncertainties of DRE estimates are also larger on regional scales than on a global scale and large discrepancies exist between different approaches. The characterization of aerosol absorption and vertical distribution remains challenging. The aerosol direct effect in the thermal infrared range and in cloudy conditions remains relatively unexplored and quite uncertain, because of a lack of global systematic aerosol vertical profile measurements. A coordinated research strategy needs to be developed for integration and assimilation of satellite measurements into models to constrain model simulations. Enhanced measurement capabilities in the next few years and high-level scientific cooperation will further advance our knowledge.
Resumo:
Background: Reports of the clinical characteristics of children and adolescents with anxiety disorders are typically based on community populations or from clinical samples with exclusion criterion applied. Little is known about the clinical characteristics of children and adolescents routinely referred for treatment for anxiety disorders. Furthermore, children and adolescents are typically treated as one homogeneous group although they may differ in ways that are clinically meaningful. Methods: A consecutive series of children (n = 100, aged 6-12 years) and adolescents (n = 100, aged 13-18 years), referred to a routine clinical service, were assessed for anxiety and comorbid disorders, school refusal and parental symptoms of psychopathology. Results: Children were significantly more likely to be diagnosed with separation anxiety disorder than adolescents. Adolescents with a primary anxiety disorder had significantly higher self and clinician rated anxiety symptoms and had more frequent primary diagnoses of social anxiety disorder, diagnoses and symptoms of mood disorders, and irregular school attendance. Limitations: Childhood and adolescence were considered categorically as distinct, developmental periods; in reality changes would be unlikely to occur in such a discrete manner. Conclusions: The finding that children and adolescents with anxiety disorders have distinct clinical characteristics has clear implications for treatment. Simply adapting treatments designed for children to make the materials more ‘adolescent-friendly’ is unlikely to sufficiently meet the needs of adolescents.
Resumo:
This large-scale study examined the development of time-based prospective memory (PM) across childhood and the roles that working memory updating and time monitoring play in driving age effects in PM performance. One hundred and ninety-seven children aged 5 to 14 years completed a time-based PM task where working memory updating load was manipulated within individuals using a dual task design. Results revealed age-related increases in PM performance across childhood. Working memory updating load had a negative impact on PM performance and monitoring behavior in older children, but this effect was smaller in younger children. Moreover, the frequency as well as the pattern of time monitoring predicted children’s PM performance. Our interpretation of these results is that processes involved in children’s PM may show a qualitative shift over development from simple, nonstrategic monitoring behavior to more strategic monitoring based on internal temporal models that rely specifically on working memory updating resources. We discuss this interpretation with regard to possible trade-off effects in younger children as well as alternative accounts.
Resumo:
This paper presents a summary of the work done within the European Union's Seventh Framework Programme project ECLIPSE (Evaluating the Climate and Air Quality Impacts of Short-Lived Pollutants). ECLIPSE had a unique systematic concept for designing a realistic and effective mitigation scenario for short-lived climate pollutants (SLCPs; methane, aerosols and ozone, and their precursor species) and quantifying its climate and air quality impacts, and this paper presents the results in the context of this overarching strategy. The first step in ECLIPSE was to create a new emission inventory based on current legislation (CLE) for the recent past and until 2050. Substantial progress compared to previous work was made by including previously unaccounted types of sources such as flaring of gas associated with oil production, and wick lamps. These emission data were used for present-day reference simulations with four advanced Earth system models (ESMs) and six chemistry transport models (CTMs). The model simulations were compared with a variety of ground-based and satellite observational data sets from Asia, Europe and the Arctic. It was found that the models still underestimate the measured seasonality of aerosols in the Arctic but to a lesser extent than in previous studies. Problems likely related to the emissions were identified for northern Russia and India, in particular. To estimate the climate impacts of SLCPs, ECLIPSE followed two paths of research: the first path calculated radiative forcing (RF) values for a large matrix of SLCP species emissions, for different seasons and regions independently. Based on these RF calculations, the Global Temperature change Potential metric for a time horizon of 20 years (GTP20) was calculated for each SLCP emission type. This climate metric was then used in an integrated assessment model to identify all emission mitigation measures with a beneficial air quality and short-term (20-year) climate impact. These measures together defined a SLCP mitigation (MIT) scenario. Compared to CLE, the MIT scenario would reduce global methane (CH4) and black carbon (BC) emissions by about 50 and 80 %, respectively. For CH4, measures on shale gas production, waste management and coal mines were most important. For non-CH4 SLCPs, elimination of high-emitting vehicles and wick lamps, as well as reducing emissions from gas flaring, coal and biomass stoves, agricultural waste, solvents and diesel engines were most important. These measures lead to large reductions in calculated surface concentrations of ozone and particulate matter. We estimate that in the EU, the loss of statistical life expectancy due to air pollution was 7.5 months in 2010, which will be reduced to 5.2 months by 2030 in the CLE scenario. The MIT scenario would reduce this value by another 0.9 to 4.3 months. Substantially larger reductions due to the mitigation are found for China (1.8 months) and India (11–12 months). The climate metrics cannot fully quantify the climate response. Therefore, a second research path was taken. Transient climate ensemble simulations with the four ESMs were run for the CLE and MIT scenarios, to determine the climate impacts of the mitigation. In these simulations, the CLE scenario resulted in a surface temperature increase of 0.70 ± 0.14 K between the years 2006 and 2050. For the decade 2041–2050, the warming was reduced by 0.22 ± 0.07 K in the MIT scenario, and this result was in almost exact agreement with the response calculated based on the emission metrics (reduced warming of 0.22 ± 0.09 K). The metrics calculations suggest that non-CH4 SLCPs contribute ~ 22 % to this response and CH4 78 %. This could not be fully confirmed by the transient simulations, which attributed about 90 % of the temperature response to CH4 reductions. Attribution of the observed temperature response to non-CH4 SLCP emission reductions and BC specifically is hampered in the transient simulations by small forcing and co-emitted species of the emission basket chosen. Nevertheless, an important conclusion is that our mitigation basket as a whole would lead to clear benefits for both air quality and climate. The climate response from BC reductions in our study is smaller than reported previously, possibly because our study is one of the first to use fully coupled climate models, where unforced variability and sea ice responses cause relatively strong temperature fluctuations that may counteract (and, thus, mask) the impacts of small emission reductions. The temperature responses to the mitigation were generally stronger over the continents than over the oceans, and with a warming reduction of 0.44 K (0.39–0.49) K the largest over the Arctic. Our calculations suggest particularly beneficial climate responses in southern Europe, where surface warming was reduced by about 0.3 K and precipitation rates were increased by about 15 (6–21) mm yr−1 (more than 4 % of total precipitation) from spring to autumn. Thus, the mitigation could help to alleviate expected future drought and water shortages in the Mediterranean area. We also report other important results of the ECLIPSE project.
Resumo:
Objectives Today, fractures at the growth plate (or physis) are common injuries in children, but provide challenges of identification in skeletonized remains. Clinical studies provide detailed information on the mechanisms, locations, age of occurrence, and complications associated with physeal fractures, enabling the development of new criteria for identifying this injury in non-adults. To test these criteria, skeletal remains from five rural and urban medieval cemeteries were examined. Methods The sample consisted of 961 skeletons (0-17 years) with open epiphyses. Macroscopic observation looked for any irregularities of the metaphysis or epiphysis which was consistent with the clinical appearance of physeal fractures or resulting complications. Radiographic examination was applied to identify fracture lines or early growth arrest. Results This study revealed 12 cases of physeal trauma (1.2%). Physeal fractures occurred predominantly at the distal end (75%), and while they were identified in all age categories, they were most frequent in those aged 12-17 years (0.2% TPR). The humerus was the most commonly affected location (3/12 or 25%). Conclusions This study highlights the potential for recognizing physeal fractures in children of all ages, enhancing our understanding of non-adult trauma, and enabling us to assign a more precise age of the injury to build up a picture of their activities in the past.
Resumo:
The redesign of defined benefit pension schemes usually results in a substantial redistribution of wealth between age cohorts of members, pensioners, and the sponsor. This is the first study to quantify the redistributive effects of a rule change by a real world scheme (the Universities Superannuation Scheme, USS) where the sponsor underwrites the pension promise. In October 2011 USS closed its final salary scheme to new members, opened a career average revalued earnings (CARE) section, and moved to ‘cap and share’ contribution rates. We find that the pre-October 2011 scheme was not viable in the long run, while the post-October 2011 scheme is probably viable in the long run, but faces medium term problems. In October 2011 future members of USS lost 65% of their pension wealth (or roughly £100,000 per head), equivalent to a reduction of roughly 11% in their total compensation, while those aged over 57 years lost almost nothing. The riskiness of the pension wealth of future members increased by a third, while the riskiness of the present value of the sponsor’s future contributions reduced by 10%. Finally, the sponsor’s wealth increased by about £32.5 billion, equivalent to a reduction of 26% in their pension costs.