29 resultados para AFT Models for Crash Duration Survival Analysis


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The 'direct costs' attributable to 30 different endemic diseases of farm animals in Great Britain are estimated using a standardised method to construct a simple model for each disease that includes consideration of disease prevention and treatment costs. The models so far developed provide a basis for further analyses including cost-benefit analyses for the economic assessment of disease control options. The approach used reflects the inherent livestock disease information constraints, which limit the application of other economic analytical methods. It is a practical and transparent approach that is relatively easily communicated to veterinary scientists and policy makers. The next step is to develop the approach by incorporating wider economic considerations into the analyses in a way that will demonstrate to policy makers and others the importance of an economic perspective to livestock disease issues.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Motivation: Intrinsic protein disorder is functionally implicated in numerous biological roles and is, therefore, ubiquitous in proteins from all three kingdoms of life. Determining the disordered regions in proteins presents a challenge for experimental methods and so recently there has been much focus on the development of improved predictive methods. In this article, a novel technique for disorder prediction, called DISOclust, is described, which is based on the analysis of multiple protein fold recognition models. The DISOclust method is rigorously benchmarked against the top.ve methods from the CASP7 experiment. In addition, the optimal consensus of the tested methods is determined and the added value from each method is quantified. Results: The DISOclust method is shown to add the most value to a simple consensus of methods, even in the absence of target sequence homology to known structures. A simple consensus of methods that includes DISOclust can significantly outperform all of the previous individual methods tested.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We focus on the comparison of three statistical models used to estimate the treatment effect in metaanalysis when individually pooled data are available. The models are two conventional models, namely a multi-level and a model based upon an approximate likelihood, and a newly developed model, the profile likelihood model which might be viewed as an extension of the Mantel-Haenszel approach. To exemplify these methods, we use results from a meta-analysis of 22 trials to prevent respiratory tract infections. We show that by using the multi-level approach, in the case of baseline heterogeneity, the number of clusters or components is considerably over-estimated. The approximate and profile likelihood method showed nearly the same pattern for the treatment effect distribution. To provide more evidence two simulation studies are accomplished. The profile likelihood can be considered as a clear alternative to the approximate likelihood model. In the case of strong baseline heterogeneity, the profile likelihood method shows superior behaviour when compared with the multi-level model. Copyright (C) 2006 John Wiley & Sons, Ltd.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Accelerated failure time models with a shared random component are described, and are used to evaluate the effect of explanatory factors and different transplant centres on survival times following kidney transplantation. Different combinations of the distribution of the random effects and baseline hazard function are considered and the fit of such models to the transplant data is critically assessed. A mixture model that combines short- and long-term components of a hazard function is then developed, which provides a more flexible model for the hazard function. The model can incorporate different explanatory variables and random effects in each component. The model is straightforward to fit using standard statistical software, and is shown to be a good fit to the transplant data. Copyright (C) 2004 John Wiley Sons, Ltd.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

1. Demographic models are assuming an important role in management decisions for endangered species. Elasticity analysis and scope for management analysis are two such applications. Elasticity analysis determines the vital rates that have the greatest impact on population growth. Scope for management analysis examines the effects that feasible management might have on vital rates and population growth. Both methods target management in an attempt to maximize population growth. 2. The Seychelles magpie robin Copsychus sechellarum is a critically endangered island endemic, the population of which underwent significant growth in the early 1990s following the implementation of a recovery programme. We examined how the formal use of elasticity and scope for management analyses might have shaped management in the recovery programme, and assessed their effectiveness by comparison with the actual population growth achieved. 3. The magpie robin population doubled from about 25 birds in 1990 to more than 50 by 1995. A simple two-stage demographic model showed that this growth was driven primarily by a significant increase in the annual survival probability of first-year birds and an increase in the birth rate. Neither the annual survival probability of adults nor the probability of a female breeding at age 1 changed significantly over time. 4. Elasticity analysis showed that the annual survival probability of adults had the greatest impact on population growth. There was some scope to use management to increase survival, but because survival rates were already high (> 0.9) this had a negligible effect on population growth. Scope for management analysis showed that significant population growth could have been achieved by targeting management measures at the birth rate and survival probability of first-year birds, although predicted growth rates were lower than those achieved by the recovery programme when all management measures were in place (i.e. 1992-95). 5. Synthesis and applications. We argue that scope for management analysis can provide a useful basis for management but will inevitably be limited to some extent by a lack of data, as our study shows. This means that identifying perceived ecological problems and designing management to alleviate them must be an important component of endangered species management. The corollary of this is that it will not be possible or wise to consider only management options for which there is a demonstrable ecological benefit. Given these constraints, we see little role for elasticity analysis because, when data are available, a scope for management analysis will always be of greater practical value and, when data are lacking, precautionary management demands that as many perceived ecological problems as possible are tackled.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A significant challenge in the prediction of climate change impacts on ecosystems and biodiversity is quantifying the sources of uncertainty that emerge within and between different models. Statistical species niche models have grown in popularity, yet no single best technique has been identified reflecting differing performance in different situations. Our aim was to quantify uncertainties associated with the application of 2 complimentary modelling techniques. Generalised linear mixed models (GLMM) and generalised additive mixed models (GAMM) were used to model the realised niche of ombrotrophic Sphagnum species in British peatlands. These models were then used to predict changes in Sphagnum cover between 2020 and 2050 based on projections of climate change and atmospheric deposition of nitrogen and sulphur. Over 90% of the variation in the GLMM predictions was due to niche model parameter uncertainty, dropping to 14% for the GAMM. After having covaried out other factors, average variation in predicted values of Sphagnum cover across UK peatlands was the next largest source of variation (8% for the GLMM and 86% for the GAMM). The better performance of the GAMM needs to be weighed against its tendency to overfit the training data. While our niche models are only a first approximation, we used them to undertake a preliminary evaluation of the relative importance of climate change and nitrogen and sulphur deposition and the geographic locations of the largest expected changes in Sphagnum cover. Predicted changes in cover were all small (generally <1% in an average 4 m2 unit area) but also highly uncertain. Peatlands expected to be most affected by climate change in combination with atmospheric pollution were Dartmoor, Brecon Beacons and the western Lake District.

Relevância:

40.00% 40.00%

Publicador:

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We present a comparative analysis of projected impacts of climate change on river runoff from two types of distributed hydrological model, a global hydrological model (GHM) and catchment-scale hydrological models (CHM). Analyses are conducted for six catchments that are global in coverage and feature strong contrasts in spatial scale as well as climatic and development conditions. These include the Liard (Canada), Mekong (SE Asia), Okavango (SW Africa), Rio Grande (Brazil), Xiangu (China) and Harper's Brook (UK). A single GHM (Mac-PDM.09) is applied to all catchments whilst different CHMs are applied for each catchment. The CHMs typically simulate water resources impacts based on a more explicit representation of catchment water resources than that available from the GHM, and the CHMs include river routing. Simulations of average annual runoff, mean monthly runoff and high (Q5) and low (Q95) monthly runoff under baseline (1961-1990) and climate change scenarios are presented. We compare the simulated runoff response of each hydrological model to (1) prescribed increases in global mean temperature from the HadCM3 climate model and (2)a prescribed increase in global-mean temperature of 2oC for seven GCMs to explore response to climate model and structural uncertainty. We find that differences in projected changes of mean annual runoff between the two types of hydrological model can be substantial for a given GCM, and they are generally larger for indicators of high and low flow. However, they are relatively small in comparison to the range of projections across the seven GCMs. Hence, for the six catchments and seven GCMs we considered, climate model structural uncertainty is greater than the uncertainty associated with the type of hydrological model applied. Moreover, shifts in the seasonal cycle of runoff with climate change are presented similarly by both hydrological models, although for some catchments the monthly timing of high and low flows differs.This implies that for studies that seek to quantify and assess the role of climate model uncertainty on catchment-scale runoff, it may be equally as feasible to apply a GHM as it is to apply a CHM, especially when climate modelling uncertainty across the range of available GCMs is as large as it currently is. Whilst the GHM is able to represent the broad climate change signal that is represented by the CHMs, we find, however, that for some catchments there are differences between GHMs and CHMs in mean annual runoff due to differences in potential evaporation estimation methods, in the representation of the seasonality of runoff, and in the magnitude of changes in extreme monthly runoff, all of which have implications for future water management issues.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The results of coupled high resolution global models (CGCMs) over South America are discussed. HiGEM1.2 and HadGEM1.2 simulations, with horizontal resolution of ~90 and 135 km, respectively, are compared. Precipitation estimations from CMAP (Climate Prediction Center—Merged Analysis of Precipitation), CPC (Climate Prediction Center) and GPCP (Global Precipitation Climatology Project) are used for validation. HiGEM1.2 and HadGEM1.2 simulated seasonal mean precipitation spatial patterns similar to the CMAP. The positioning and migration of the Intertropical Convergence Zone and of the Pacific and Atlantic subtropical highs are correctly simulated by the models. In HiGEM1.2 and HadGEM1.2, the intensity and locations of the South Atlantic Convergence Zone are in agreement with the observed dataset. The simulated annual cycles are in phase with estimations of rainfall for most of the six regions considered. An important result is that HiGEM1.2 and HadGEM1.2 eliminate a common problem of coarse resolution CGCMs, which is the simulation of a semiannual cycle of precipitation due to the semiannual solar forcing. Comparatively, the use of high resolution in HiGEM1.2 reduces the dry biases in the central part of Brazil during austral winter and spring and in most part of the year over an oceanic box in eastern Uruguay.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A number of urban land-surface models have been developed in recent years to satisfy the growing requirements for urban weather and climate interactions and prediction. These models vary considerably in their complexity and the processes that they represent. Although the models have been evaluated, the observational datasets have typically been of short duration and so are not suitable to assess the performance over the seasonal cycle. The First International Urban Land-Surface Model comparison used an observational dataset that spanned a period greater than a year, which enables an analysis over the seasonal cycle, whilst the variety of models that took part in the comparison allows the analysis to include a full range of model complexity. The results show that, in general, urban models do capture the seasonal cycle for each of the surface fluxes, but have larger errors in the summer months than in the winter. The net all-wave radiation has the smallest errors at all times of the year but with a negative bias. The latent heat flux and the net storage heat flux are also underestimated, whereas the sensible heat flux generally has a positive bias throughout the seasonal cycle. A representation of vegetation is a necessary, but not sufficient, condition for modelling the latent heat flux and associated sensible heat flux at all times of the year. Models that include a temporal variation in anthropogenic heat flux show some increased skill in the sensible heat flux at night during the winter, although their daytime values are consistently overestimated at all times of the year. Models that use the net all-wave radiation to determine the net storage heat flux have the best agreement with observed values of this flux during the daytime in summer, but perform worse during the winter months. The latter could result from a bias of summer periods in the observational datasets used to derive the relations with net all-wave radiation. Apart from these models, all of the other model categories considered in the analysis result in a mean net storage heat flux that is close to zero throughout the seasonal cycle, which is not seen in the observations. Models with a simple treatment of the physical processes generally perform at least as well as models with greater complexity.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Cancer cachexia is a multifactorial syndrome that includes muscle wasting and inflammation. As gut microbes influence host immunity and metabolism, we investigated the role of the gut microbiota in the therapeutic management of cancer and associated cachexia. A community-wide analysis of the caecal microbiome in two mouse models of cancer cachexia (acute leukaemia or subcutaneous transplantation of colon cancer cells) identified common microbial signatures, including decreased Lactobacillus spp. and increased Enterobacteriaceae and Parabacteroides goldsteinii/ASF 519. Building on this information, we administered a synbiotic containing inulin-type fructans and live Lactobacillus reuteri 100-23 to leukaemic mice. This treatment restored the Lactobacillus population and reduced the Enterobacteriaceae levels. It also reduced hepatic cancer cell proliferation, muscle wasting and morbidity, and prolonged survival. Administration of the synbiotic was associated with restoration of the expression of antimicrobial proteins controlling intestinal barrier function and gut immunity markers, but did not impact the portal metabolomics imprinting of energy demand. In summary, this study provided evidence that the development of cancer outside the gut can impact intestinal homeostasis and the gut microbial ecosystem and that a synbiotic intervention, by targeting some alterations of the gut microbiota, confers benefits to the host, prolonging survival and reducing cancer proliferation and cachexia.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The human gut is a complex ecosystem occupied by a diverse microbial community. Modulation of this microbiota impacts health and disease. The definitive way to investigate the impact of dietary intervention on the gut microbiota is a human trial. However, human trials are expensive and can be difficult to control; thus, initial screening is desirable. Utilization of a range of in vitro and in vivo models means that useful information can be gathered prior to the necessity for human intervention. This review discusses the benefits and limitations of these approaches.