17 resultados para A.C. Mix, unpublished data
Resumo:
The variety and quality of the tenant mix within a shopping centre is a key concern in shopping centre management. Tenant mix determines the extent of externalities between outlets in the centre, helps establish the image of the centre and, as a result, determines the attractiveness of the centre for consumers. This then translates into sales and rents. However, the management of tenant mix has largely been based on perceived “optimum” arrangements and industry rules of thumb. This paper attempts to model the impact of tenant mix on the rent paid by retailers in larger UK shopping centres and, hence, the returns made by shopping centre landlords. It extends work on shopping centre rent determination (see Working Paper 10/03) utilising a database of 148 regional shopping centres in the UK, with detailed data for over 1900 tenants. Econometric models test the relationship between rental levels and the levels of retail concentration and diversity, while controlling for a range of continuous and qualitative characteristics of each tenant, each retail product, and each shopping centre. Factor analysis is then used to extract the core retail and service categories from the tenant lists of the 148 shopping centres. The factor scores from these core retailer factors are then tested against rent payable. The results from the empirical analysis allow us to generate some clear analytical and empirical implications for optimal retail management.
Resumo:
Refractivity changes (ΔN) derived from radar ground clutter returns serve as a proxy for near-surface humidity changes (1 N unit ≡ 1% relative humidity at 20 °C). Previous studies have indicated that better humidity observations should improve forecasts of convection initiation. A preliminary assessment of the potential of refractivity retrievals from an operational magnetron-based C-band radar is presented. The increased phase noise at shorter wavelengths, exacerbated by the unknown position of the target within the 300 m gate, make it difficult to obtain absolute refractivity values, so we consider the information in 1 h changes. These have been derived to a range of 30 km with a spatial resolution of ∼4 km; the consistency of the individual estimates (within each 4 km × 4 km area) indicates that ΔN errors are about 1 N unit, in agreement with in situ observations. Measurements from an instrumented tower on summer days show that the 1 h refractivity changes up to a height of 100 m remain well correlated with near-surface values. The analysis of refractivity as represented in the operational Met Office Unified Model at 1.5, 4 and 12 km grid lengths demonstrates that, as model resolution increases, the spatial scales of the refractivity structures improve. It is shown that the magnitude of refractivity changes is progressively underestimated at larger grid lengths during summer. However, the daily time series of 1 h refractivity changes reveal that, whereas the radar-derived values are very well correlated with the in situ observations, the high-resolution model runs have little skill in getting the right values of ΔN in the right place at the right time. This suggests that the assimilation of these radar refractivity observations could benefit forecasts of the initiation of convection.