18 resultados para A. bifilosa c1 WMD


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background The rhizosphere is the microbe-rich zone around plant roots and is a key determinant of the biosphere's productivity. Comparative transcriptomics was used to investigate general and plant-specific adaptations during rhizosphere colonization. Rhizobium leguminosarum biovar viciae was grown in the rhizospheres of pea (its legume nodulation host), alfalfa (a non-host legume) and sugar beet (non-legume). Gene expression data were compared to metabolic and transportome maps to understand adaptation to the rhizosphere. Results Carbon metabolism was dominated by organic acids, with a strong bias towards aromatic amino acids, C1 and C2 compounds. This was confirmed by induction of the glyoxylate cycle required for C2 metabolism and gluconeogenesis in all rhizospheres. Gluconeogenesis is repressed in R. leguminosarum by sugars, suggesting that although numerous sugar and putative complex carbohydrate transport systems are induced in the rhizosphere, they are less important carbon sources than organic acids. A common core of rhizosphere-induced genes was identified, of which 66% are of unknown function. Many genes were induced in the rhizosphere of the legumes, but not sugar beet, and several were plant specific. The plasmid pRL8 can be considered pea rhizosphere specific, enabling adaptation of R. leguminosarum to its host. Mutation of many of the up-regulated genes reduced competitiveness for pea rhizosphere colonization, while two genes specifically up-regulated in the pea rhizosphere reduced colonization of the pea but not alfalfa rhizosphere. Conclusions Comparative transcriptome analysis has enabled differentiation between factors conserved across plants for rhizosphere colonization as well as identification of exquisite specific adaptation to host plants.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A controlled laboratory experiment is described, in principle and practice, which can be used for the of determination the rate of tissue decomposition in soil. By way of example, an experiment was conducted to determine the effect of temperature (12°C, 22°C) on the aerobic decomposition of skeletal muscle tissue (Organic Texel × Suffolk lamb (Ovis aries)) in a sandy loam soil. Measurements of decomposition processes included muscle tissue mass loss, microbial CO2 respiration, and muscle tissue carbon (C) and nitrogen (N). Muscle tissue mass loss at 22°C always was greater than at 12°C (p < 0.001). Microbial respiration was greater in samples incubated at 22°C for the initial 21 days of burial (p < 0.01). All buried muscle tissue samples demonstrated changes in C and N content at the end of the experiment. A significant correlation (p < 0.001) was demonstrated between the loss of muscle tissue-derived C (C1) and microbially-respired C (Cm) demonstrating CO2 respiration may be used to predict mass loss and hence biodegradation. In this experiment Q10 (12°C - 22°C) = 2.0. This method is recommended as a useful tool in determining the effect of environmental variables on the rate of decomposition of various tissues and associated materials.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present study aims to investigate the dose dependent effects of consuming diets enriched in flavonoid-rich and flavonoid-poor fruits and vegetables on the urine metabolome of adults who had a C1.5 fold increased risk of cardiovascular diseases. A single-blind, dose-dependent, parallel randomized controlled dietary intervention was conducted where volunteers (n = 126) were randomly assigned to one of three diets: high flavonoid diet, low flavonoid diet or habitual diet as a control for 18 weeks. High resolution LC– MS untargeted metabolomics with minimal sample cleanup was performed using an Orbitrap mass spectrometer. Putative biomarkers which characterize diets with high and low flavonoid content were selected by state-of-the-art data analysis strategies and identified by HR-MS and HR-MS/MS assays. Discrimination between diets was observed by application of two linear mixedmodels: one including a diet-time interaction effect and the second containing only a time effect. Valerolactones, phenolic acids and their derivatives were among sixteen biomarkers related to the high flavonoid dietary exposure. Four biomarkers related to the low flavonoid diet belonged to the family of phenolic acids. For the first time abscisic acid glucuronide was reported as a biomarker after a dietary intake, however its origins have to be examined by future hypothesis driven experiments using a more targeted approach. This metabolomic analysis has identified a number of dose dependent urinary biomarkers (i.e. proline betaine or iberin-N-acetyl cysteine), which can be used in future observation and intervention studies to assess flavonoids and nonflavonoid phenolic intakes and compliance to fruit and vegetable intervention.