82 resultados para A-BETA
Resumo:
Four terminally blocked tripeptides containing delta-aminovaleric acid residue self-assemble to form supramolecular beta-sheet structures as are revealed from their FT-IR data. Single crystal X-ray diffraction studies of two representative peptides also show that they form parallel beta-sheet structures. Self-aggregation of these beta-sheet forming peptides leads to the formation of fibrillar structures, as is evident from scanning electron microscopic (SEM) and transmission electron microscopic (TEM) images. These peptide fibrils bind to a physiological dye, Congo red and exhibit a typical green-gold birefringence under polarized light, showing close resemblance to neurodegenerative disease causing amyloid fibrils. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
The crystal structure of a terminally protected tripeptide Boc-Leu-Aib-beta-Ala-OMe 1 containing non-coded amino acids reveals that it adopts a beta-turn structure, which sell-assembles to form a supramolecular beta-sheet via non-covalent interactions. The SEM image of peptide 1 exhibits amyloid-like fibrillar morphology in the solid state. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
A single-crystal X-ray diffraction study of the terminally protected tetrapeptide Boc-beta-Ala-Aib-Leu-Aib-OMe 1 (Aib: alpha-aminoisobutyric acid; beta-Ala: beta-Alanine) reveals that it adopts a new type of double turn structure which self-associates to form a unique supramolecular helix through intermolecular hydrogen bonds. Scanning electron microscopic studies show that peptide 1 exhibits amyloid-like fibrillar morphology in the solid state. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
Single crystal X-ray diffraction studies of a terminally blocked tripeptide Boc-Leu(1)-Aib(2)-Leu(3)-OMe 1 demonstrates that it adopts a bend structure without any intramolecular hydrogen bond. Peptide 1 self-assembles to form a supramolecular antiparallel beta-sheet structure by various non-covalent interactions including intermolecular hydrogen bonds in the crystal and it exhibits amyloid-like fibrillar morphology in the solid state. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
FT-IR data of six terminally blocked tripeptides containing Acp (epsilon-aminocaproic acid) reveals that all of them form supramolecular beta-sheets in the solid state. Single crystal X-ray diffraction studies of two peptides not only support this data but also disclose the fact that the supramolecular beta-sheet formation is initiated via dimer formation. The Scanning Electron Microscopic images of all peptides exhibit amyloid-like fibrils that show green birefringence after binding with Congo red, which is a characteristic feature of many neurodegenerative disease causing amyloid fibrils. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
We describe the capillary flow behavior of gels of beta-lactoglobulin (beta-lg) containing droplets of fibrils and the shear flow alignment of beta-lg fibers in dilute aqueous solutions. Polarized optical microscopy and laser scanning confocal microscopy are used to show that capillary shear flow does not affect the fibril droplet sizes in the beta-lg gels, the system behaving in this respect as a solution of compact colloidal particles under shear flow. Small-angle X-ray scattering (SAXS) on dilute aqueous solutions indicates that the fibers can be initially aligned under capillary shear, but this alignment is lost after 18 min of shear. Transmission electron microscopy experiments on the samples studied by SAXS suggest that the loss of orientation is due to a shear-induced breakup of the swollen fibril network. Dynamic and static light scattering on dilute beta-lg fibril aqueous solutions are used to show that before shear beta-lg fibrils behave as strongly interacting semiflexible polymers, while they behave as weakly interacting rods after 18 min of capillary shear.
Resumo:
The self-assembly in films dried from aqueous solutions of a modified amyloid beta peptide fragment is studied. We focus on sequence A beta(16-20), KLVFF, extended by two alanines at the N-terminus to give AAKLVFF. Self-assembly into twisted ribbon fibrils is observed, as confirmed by transmission electron microscopy (TEM). Dynamic light scattering reveals the semi-flexible nature of the AAKLVFF fibrils, while polarized optical microscopy shows that the peptide fibrils crystallize after an aqueous solution of AAKLVFF is matured over 5 days. The secondary structure of the fibrils is studied by FT-IR, circular dichroism and X-ray diffraction (XRD), which provide evidence for beta-sheet structure in the fibril. From high resolution TEM it is concluded that the average width of an AAKLVFF fibril is (63 +/- 18) nm, indicating that these fibrils comprise beta-sheets with multiple repeats of the unit cell, determined by XRD to have b and c dimensions 1.9 and 4.4 nm with an a axis 0.96 nm, corresponding to twice the peptide backbone spacing in the antiparallel beta-sheet. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The solvent-induced transition between self-assembled structures formed by the peptide AAKLVFF is studied via electron microscopy, light scattering, and spectroscopic techniques. The peptide is based on a core fragment of the amyloid beta-peptide, KLVFF, extended by two alanine residues. AAKLVFF exhibits distinct structures of twisted fibrils in water or nanotubes in methanol. For intermediate water/methanol compositions, these structures are disrupted and replaced by wide filamentous tapes that appear to be lateral aggregates of thin protofilaments. The orientation of the beta-strands in the twisted tapes or nanotubes can be deduced from X-ray diffraction on aligned stalks, as well as FT-IR experiments in transmission compared to attenuated total reflection. Strands are aligned perpendicular to the axis of the twisted fibrils or the nanotubes. The results are interpreted in light of recent results on the effect of competitive hydrogen bonding upon self-assembly in soft materials in water/methanol mixtures.
Resumo:
beta-Lactones have, for the first time, been prepared by 4-exo-trig radical cyclization. Thus, alpha-ethenoyloxy radicals react in the presence of tributylstannane in a photothermal process to give beta-lactones. Highest yields were obtained when groups capable of stabilizing a carboncentered radical were present at the 3-position of the alkenoate acceptor.
Resumo:
The terminally protected tripeptide Boc-Ala(1)-Leu(2)-Ala(3)-OMe 1 forms antiparallel hydrogen-bonded dimers of two different conformers in the asymmetric unit and the individual dimers then self-associate to form supramolecular beta-sheet structures in crystals and amyloid-like fibrils in the solid state.
Resumo:
Oxorhenium(V) complexes of beta-diketonate systems have been synthesized and isolated in pure form. The red complexes n-Bu4N[ReO(R1COCHCOR2)Cl-3] (acac, R-1=R-2=CH3; bzac, R-1=CH3 and R-2=C6H5; bzbz, R-1=R-2=C6H5) have been characterized by elemental analyses, spectroscopic and other physico-chemical tools. One complex, n-Bu4N[ReO(bzbz)Cl-3] (1c) has been subjected to single-crystal X-ray analysis. In the structure of the anion, the metal has a six-coordinate octahedral environment in which the bidentate -diketone ligand is cis and trans to the terminal oxygen.
Resumo:
Single crystal X-ray diffraction studies show that the extended structure of dipeptide I Boc-beta-Ala-m-ABA-OMe (m-ABA: meta-aminobenzoic acid) self-assembles in the solid state by intermolecular hydrogen bonding to create an infinite parallel P-sheet structure. In dipeptide II Boc-gamma-Abu-m-ABA-OMe (gamma-Abu: gamma-aminobutyric acid), two such parallel beta-sheets are further cross-linked by intermolecular hydrogen bonding through m-aminobenzoic acid moieties. SEM (scanning electron microscopy) studies reveal that both the peptides I and II form amyloid-like fibrils in the solid state. The fibrils are also found to be stained readily by Congo red, a characteristic feature of the amyloid fiber whose accumulation causes several fatal diseases such as Alzheimer's, prion-protein etc.
Resumo:
X-ray diffraction studies show that peptides Boc-Leu-Aib-m-ABA-OMe (I) (Aib, alpha-aminoisobutyric acid; m-ABA, meta-aminobenzoic acid) and Boc-Phe-Aib-m-ABA-OMe, (II) adopt a type-II beta-turn conformation, solely stabilized by co-operative steric interactions amongst the amino acid residues. This type of U-turn without any intramolecular hydrogen bonding is generally referred to as an open turn. Although there are some examples of constrained cyclic peptides in which o-substituted benzenes have been inserted to mimic the turn region of the neurotrophin, a nerve growth factor, peptides I and II present novel two examples where m-aminobenzoic acid has been incorporated in the beta-turn of acyclic tripeptides. The result also demonstrates the first crystallographic evidence of a beta-turn structure containing an inserted m-aminobenzoic acid, which can be considered as a rigid gamma-aminobutyric acid with an all-trans extended configuration. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Single crystal X-ray diffraction study reveals that the water soluble tetrapeptide H2N-Ile-Aib-Leu-m-ABA-CO2H, containing non-coded Aib (alpha-amino isobutyric acid) and m-ABA (meta-amino benzoic acid), crystallizes with two smallest possible diastereomeric beta-hairpin molecules in the asymmetric unit. Although in both of the molecules the chiralities at Ile(1) and Leu(3) are S, a conformational reversal in the back bone chain is observed to produce the beta-hairpins with beta-turn conformations of type II and II'. Interestingly Aib which is known to adopt helical conformation, adopts unusual semi-extended conformation with phi: -49.5(5)degrees, psi: 135.2(5)degrees in type II and phi: 50.6(6)degrees. psi: -137.0(4)degrees in type II' for occupying the i + 1 position of the beta-turns. The two hairpin molecules are further interlocked through intermolecular hydrogen bonds and electrostatic interactions between CO2- and -+NH3 groups to form dimeric supramolecular beta-hairpin aggregate in the crystal state. The CD measurement and 2D NMR study of the peptide in aqueous medium support the existence of beta-hairpin structure in water. (C) 2009 Elsevier B.V. All rights reserved.