93 resultados para 6-coordinate Copper(ii)
Resumo:
The IR, the ligand field spectra and the crystal structure of the mixed-ligand compound [(aquo)2,2P1 , a = 8.718(5), b = 9.407(5), c = 13.484 (7) Å, = 94.17(4)°, = 105.12(5)°, = 119.75(5)°, Z = 2, R = 0.0332, R W = 0.0869).
Resumo:
A diphenoxido-bridged dinuclear copper(II) complex, [Cu2L2(ClO4)(2)] (1), has been synthesized using a tridentate reduced Schiff base ligand, 2-[[2-(diethylamino)-ethylamino]methyl]phenol (HL). The addition of triethylamine to the methanolic solution of this complex produced a novel triple bridged (double phenoxido and single hydroxido) dinuclear copper(II) complex, [Cu2L2(OH)]ClO4 (2). Both complexes 1 and 2 were characterized by X-ray structural analyses, variable-temperature magnetic susceptibility measurements, and spectroscopic methods. In 1, the two phenoxido bridges are equatorial-equatorial and the species shows strong antiferromagnetic coupling with J = -615.6(6.1) cm(-1). The inclusion of the equatorial-equatorial hydroxido bridge in 2 changes the Cu center dot center dot center dot Cu distance from 3.018 angstrom (avg.) to 2.798 angstrom (avg.), the positions of the phenoxido bridges to axial-equatorial, and the magnetic coupling to ferromagnetic with J = 50.1(1.4) cm(-1). Using 3,5-di-tert-butylcatechol as the substrate, the catecholase activity of the complexes has been studied in a methanol solution; compound 2 shows higher catecholase activity (k(cat) = 233.4 h(-1)) than compound 1 (k(cat) = 93.6 h(-1)). Both complexes generate identical species in solution, and they are interconvertible simply by changing the pH of their solutions. The higher catecholase activity of 2 seems to be due to the presence of the OH group, which increases the pH of its solution.
Resumo:
Two pentaaza macrocycles containing pyridine in the backbone, namely 3,6,9,12,18-pentaazabicyclo[12.3.1] octadeca-1(18),14,16-triene ([15]pyN(5)), and 3,6,10,13,19-pentaazabicyclo[13.3.1]nonadeca-1(19),15,17-triene ([16]pyN(5)), were synthesized in good yields. The acid-base behaviour of these compounds was studied by potentiometry at 298.2 K in aqueous solution and ionic strength 0.10 M in KNO3. The protonation sequence of [15]pyN(5) was investigated by H-1 NMR titration that also allowed the determination of protonation constants in D2O. Binding studies of the two ligands with Ca2+, Ni2+, Cu2+, Zn2+, Cd2+, and Pb2+ metal ions were performed under the same experimental conditions. The results showed that all the complexes formed with the 15-membered ligand, particularly those of Cu2+ and especially Ni2+, are thermodynamically more stable than with the larger macrocycle. Cyclic voltammetric data showed that the copper(II) complexes of the two macrocycles exhibited analogous behaviour, with a single quasi-reversible one-electron transfer reduction process assigned to the Cu(II)/Cu(I) couple. The UV-visible-near IR spectroscopic and magnetic moment data of the nickel(II) complexes in solution indicated a tetragonal distorted coordination geometry for the metal centre. X-band EPR spectra of the copper(II) complexes are consistent with distorted square pyramidal geometries. The crystal structure of [Cu([15]pyN(5))](2+) determined by X-ray diffraction showed the copper(II) centre coordinated to all five macrocyclic nitrogen donors in a distorted square pyramidal environment.
Resumo:
The 1:1 condensation of 1,2-diaminopropane and 1-phenylbutane-1,3-dione at high dilution gives a mixture of two positional isomers of terdentate mono-condensed Schiff bases 6-amino-3-methyl-1-phenyl-4-aza-2-hepten-1-one (HAMPAH) and 6-amino-3,5-dimethyl-1-phenyl-4-aza-2-hexen-1-one (HADPAH). The mixture of the terdentate ligands has been used for further condensation with pyridine-2-carboxaldehyde or 2-acetylpyridine to obtain the unsymmetrical tetradentate Schiff base ligands. The tetradentate Schiff bases are then allowed to react with the methanol solution of copper(II) and nickel(II) perchlorate separately. The X-ray diffraction confirms the structures of two of the complexes and shows that the condensation site of the diamine with 1-phenylbutane-1,3-dione is the same.
Resumo:
The synthesis of two new sodium perchlorate adducts (1:2 and 1:3) with copper(II) "ligand-complexes'' is reported. One adduct is trinuclear [(CuL(1))(2)NaClO(4)] (1) and the other is tetranuclear [(CuL(2))(3)Na]ClO(4)center dot EtOH (2). The ligands are the tetradentate di-Schiff base of 1,3-propanediamines and salicylaldehyde (H(2)L(1)) or 2-hydroxyacetophenone (H(2)L(2)). Both complexes have been characterized by X-ray single crystal structure analyses. In both structures, the sodium cation has a six-coordinate distorted octahedral environment being bonded to four oxygen atoms from two Schiff-base complexes in addition to a chelated perchlorate anion in 1 and to six oxygen atoms from three Schiff-base complexes in 2. We have carried out a DFT theoretical study (RI-B97-D/def2-SVP level of theory) to compute and compare the formation energies of 1:2 and 1:3 adducts. The DFT study reveals that the latter is more stabilized than the former. The X-ray crystal structure of 1 shows that the packing of the trinuclear unit is controlled by unconventional C-H center dot center dot center dot O H-bonds and Cu(2+)-pi non-covalent interactions. These interactions explain the formation of 1 which is a priori disfavored with respect to 2.
Resumo:
We have investigated the adsorption and thermal decomposition of copper hexafluoroacetylacetonate (Cu-11(hfaC)(2)) on single crystal rutile TiO2(110). Low energy electron diffraction shows that room temperature saturation coverage of the Cu-II(hfac)(2) adsorbate forms an ordered (2 x 1) over-layer. X-ray and ultra-violet photoemission spectroscopy of the saturated surface were recorded as the sample was annealed in a sequential manner to reveal decomposition pathways. The results show that the molecule dissociatively adsorbs by detachment of one of the two ligands to form hfac and Cu-1(hfac) which chemisorb to the substrate at 298 K. These ligands only begin to decompose once the surface temperature exceeds 473 K where Cu core level shifts indicate metallisation. This reduction from Cu(I) to Cu(0) takes place in the absence of an external reducing agent and without disproportionation and is accompanied by the onset of decomposition of the hfac ligands. Finally, C K-edge near edge X-ray absorption fine structure experiments indicate that both the ligands adsorb aligned in the < 001 > direction and we propose a model in which the hfac ligands adsorb on the 5-fold coordinated Ti atoms and the Cu-1(hfac) moiety attaches to the bridging O atoms in a square planar geometry. The calculated tilt angle for these combined geometries is approximately 10 degrees to the surface normal.
Resumo:
Oxidised low density lipoprotein (LDL) may be involved in the pathogenesis of atherosclerosis. We have therefore investigated the mechanisms underlying the antioxidant/pro-oxidant behavior of dehydroascorbate, the oxidation product of ascorbic acid, toward LDL incubated With Cu2+ ions. By monitoring lipid peroxidation through the formation of conjugated dienes and lipid hydroperoxides, we show that the pro-oxidant activity of dehydroascorbate is critically dependent on the presence of lipid hydroperoxides, which accumulate during the early stages of oxidation. Using electron paramagnetic resonance spectroscopy, we show that dehydroascorbate amplifies the generation of alkoxyl radicals during the interaction of copper ions with the model alkyl hydroperoxide, tert-butylhydroperoxide. Under continuous-flow conditions, a prominent doublet signal was detected, which we attribute to both the erythroascorbate and ascorbate free radicals. On this basis, we propose that the pro-oxidant activity of dehydroascorbate toward LDL is due to its known spontaneous interconversion to erythroascorbate and ascorbate, which reduce Cu2+ to Cu+ and thereby promote the decomposition of lipid hydroperoxides. Various mechanisms, including copper chelation and Cu+ oxidation, are suggested to underlie the antioxidant behavior of dehydroascorbate in LDL that is essentially free of lipid hydroperoxides. (C) 2007 Elsevier Inc. All rights reserved.
Resumo:
The tridentate Schiff base ligand, 7-amino-4-methyl-5-aza-3-hepten-2-one (HAMAH), prepared by the mono-condensation of 1,2diaminoethane and acetylacetone, reacts with Cu(BF4)(2) center dot 6H(2)O to produce initially a dinuclear Cu(II) complex, [{Cu(AMAH)}(2) (mu-4,4'-bipyJ](BF4)(2) (1) which undergoes hydrolysis in the reaction mixture and finally produces a linear polymeric chain compound, [Cu(acac)(2)(mu-4,4'-bipy)](n) (2). The geometry around the copper atom in compound 1 is distorted square planar while that in compound 2 is essentially an elongated octahedron. On the other hand, the ligand HAMAH reacts with Cu(ClO4)(2) center dot 6H(2)O to yield a polymeric zigzag chain, [{Cu(acac)(CH3OH)(mu-4,4'-bipy)}(ClO4)](n) (3). The geometry of the copper atom in 3 is square pyramidal with the two bipyridine molecules in the cis equatorial positions. All three complexes have been characterized by elemental analysis, IR and UV-Vis spectroscopy and single crystal X-ray diffraction studies. A probable explanation for the different size and shape of the reported polynuclear complexes formed by copper(II) and 4,4'-bipyridine has been put forward by taking into account the denticity and crystal field strength of the blocking ligand as well as the Jahn-Teller effect in copper(II). (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
A new mononuclear Cu(II) complex, [CuL(ClO4)(2)] (1) has been derived from symmetrical tetradentate di-Schiff base, N,N'-bis-(1-pyridin-2-yl-ethylidene)-propane-1,3-diamine (L) and characterized by X-ray crystallography. The copper atom assumes a tetragonally distorted octahedral geometry with two perchlorate oxygens coordinated very weakly in the axial positions. Reactions of I with sodium azide, ammonium thiocyanate or sodium nitrite solution yielded compounds [CuL(N-3)]ClO4 (2), [CuL(SCN)ClO4 (3) or [CuL(NO2)]-ClO4 (4), respectively, all of which have been characterized by X-ray analysis. The geometries of the penta-coordinated copper(H) in complexes 2-4 are intermediate between square pyramid and trigonal bipyramid (tbp) having the Addition parameters (tau) 0.47, 0.45 and 0.58, respectively. In complex 4, the nitrite ion is coordinated as a chelating ligand and essentially both the 0 atoms of the nitrite occupy one axial site. Complex 1 shows distinct preference for the anion in the order SCN- > N-3(-) > NO2- in forming the complexes 24 when treated with a SCN-/N-3(-)/NO2- mixture. Electrochemical electron transfer study reveals (CuCuI)-Cu-II reduction in acetonitrile solution. (c) 2006 Elsevier B.V.. All rights reserved.
Resumo:
The title compound, [Cu(C4H8N3O2)(2)]center dot 2C(5)H(9)NO, consists of a neutral copper complex, in which the Cu II centre coordinates to two bis(methoxycarbimido) aminate ligands, solvated by two molecules of 1-methylpyrrolidin-2-one. The complex is planar and centrosymmetric, with the Cu II centre occupying a crystallographic inversion centre and adopting approximately square-planar geometry. N-H center dot center dot center dot O hydrogen-bonding interactions exist between the amine NH groups of the ligands and the O atoms of the 1-methylpyrrolidin-2-one molecules. The associated units pack to form sheets.
Resumo:
Reaction of iodoacetic acid with cupric carbonate in water in dimmed light yields green Cu(ICH2COO)(2 center dot)H2O (1). From X-ray crystallography, it is found to be a tetra-acetato bridged copper(II) dimer with the water molecules occupying the apical positions. In thermogravimetry, the coordinated water molecules are lost in the temperature range 50-100 degrees C. From magnetic susceptibility measurements in the temperature range 300-1.8 K, the exchange coupling constant J is found to be -142(1) cm(-1) and g = 2.18(2) with the spin Hamiltonian H = -2J{S-Cu1 center dot S-Cu2}. It reacts with 2,2'-bipyridine (bpy) to yield [Cu(bpy)(2)I]I. It oxidises thiophenol to Ph-S-S-Ph under dry N-2 atmosphere.
Resumo:
Condensations of 2-(2-aminoethyl)pyridine with 4-methylimidazole-5-carboxaldehyde and 1-methyl-2-imidazolecarboxaldehyde generate the tridentate N donor ligands L and L' respectively. Reactions of Cu(NCS)(2) with L and L' yield respectively CuL(SCN)(NCS) (1) containing a CuN4S core and CuL'(NCS)(2) (2) having a CuN5 core. Both the cores are square pyramidal with SCN bound in 1 at the axial position through the S end. This differential behaviour of SCN in the two complexes despite the ligands being very similar, is investigated by DFT calculations at the B3LYP/TZV level. It is found that DFT calculations predict isolation of the Cu(ligand)(NCS)(2) species for both the ligands L and L'. Presence of an offsetting intermolecular H-bonding between the N atom of the thiocyanate and the N-H proton of the ligand L of an adjacent molecule makes the binding of SCN via the S end feasible in 1 resulting in the H-bonded-dimer Cu2L2(SCN)(2)(NCS)(2). The strength of the H-bond is estimated as 27.1 kJ mol (1) from the DFT calculations. The question of such H-bonding does not arise with L' as it lacks in a similar H atom. Dimeric 1 represents a case of two non-interacting spins. (C) 2008 Elsevier B. V. All rights reserved.
Resumo:
Two copper(II) complexes of the type CuL2.imidazole (1) and Cu2L4(4.4'-bpy).2H(2)O.C6H14 (2), where LH = 1-nitroso-2-naphthol and 4.4'-bpy = 4,4'-bipyridine, are characterised by X-ray crystallography. In 2, the two copper atoms are linked by 4,4'-bpy. In both the complexes, copper is found to have a distorted square pyramidal N3O2 coordination sphere. The axial position in I is occupied by an oxygen atom while those in 2 by the nitrogen atoms of 4.4'-bpy. The two complexes display quasireversible Cu(III/II) couples around 0.68 V vs. saturated calomel electrode in cyclic voltammetry in dichloromethane.
Resumo:
Two polymeric azido bridged complexes [Ni2L2(N-3)(3)](n)(ClO4). (1) and [Cu(bpdS)(2)(N-3)],(ClO4),(H2O)(2.5n) (2) [L = Schiff base, obtained from the condensation of pyridine-2-aldehyde with N,N,2,2-tetramethyl-1,3-propanediamine; bpds = 4,4'-bipyridyl disulfide] have been synthesized and their crystal structures have been determined. Complex 1, C26H42ClN15Ni2O4, crystallizes in a triclinic system, space group P1 with a 8.089(13), b = 9.392(14), c = 12.267(18) angstrom, a = 107.28(l), b 95.95(1), gamma = 96.92(1)degrees and Z = 2; complex 2, C20H21ClCuN7O6.5S4, crystallizes in an orthorhombic system, space group Pnna with a = 10.839(14), b = 13.208(17), c = 19.75(2) angstrom and Z = 4. The crystal structure of I consists of 1D polymers of nickel(L) units, alternatively connected by single and double bridging mu-(1,3-N-3) ligand with isolated perchlorate anions. Variable temperature magnetic susceptibility data of the complex have been measured and the fitting,of magnetic data was carried out applying the Borris-Almenar formula for such types of alternating one-dimensional S = 1 systems, based on the Hamiltonian H = -J Sigma(S2iS2i-1 + aS(2i)S(2i+1)). The best-fit parameters obtained are J = -106.7 +/- 2 cm(-1); a = 0.82 +/- 0.02; g = 2.21 +/- 0.02. Complex 2 is a 2D network of 4,4 topology with the nodes occupied by the Cu-II ions, and the edges formed by single azide and double bpds connectors. The perchlorate anions are located between pairs of bpds. The magnetic data have been fitted considering the complex as a pseudo-one-dimensional system, with all copper((II)) atoms linked by [mu(1,3-azido) bridging ligands at axial positions (long Cu...N-3 distances) since the coupling through long bpds is almost nil. The best-fit parameters obtained with this model are J = -1.21 +/- 0.2 cm(-1), g 2.14 +/- 0.02. (c) Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2005).
Resumo:
The synthesis. crystal structure and thermal study of the blue catena-(L-glutamato)-aqua copper(II) monohydrate have been reported. The compound crystallizes in P2(1)2(1)2(1) space group and consists of a polymeric three-dimensional network of copper(II) which is coordinated with the amino nitrogen and the carboxylate oxygen Of L-glutamate, the side chain carboxylate oxygen of a neighbouring L-glutamate and the oxygen of a water molecule in the equatorial position. Weak coordination of two additional glutamate oxygen atoms to both the axial positions Completes a distorted octahedron. The crystal structure shows that the lattice water is stabilized by the formation of strong H-bonding network with the coordinated water molecule. Removal and reabsorption of the water molecule have been studied by thermal analysis.