39 resultados para 499
Resumo:
We propose a unified data modeling approach that is equally applicable to supervised regression and classification applications, as well as to unsupervised probability density function estimation. A particle swarm optimization (PSO) aided orthogonal forward regression (OFR) algorithm based on leave-one-out (LOO) criteria is developed to construct parsimonious radial basis function (RBF) networks with tunable nodes. Each stage of the construction process determines the center vector and diagonal covariance matrix of one RBF node by minimizing the LOO statistics. For regression applications, the LOO criterion is chosen to be the LOO mean square error, while the LOO misclassification rate is adopted in two-class classification applications. By adopting the Parzen window estimate as the desired response, the unsupervised density estimation problem is transformed into a constrained regression problem. This PSO aided OFR algorithm for tunable-node RBF networks is capable of constructing very parsimonious RBF models that generalize well, and our analysis and experimental results demonstrate that the algorithm is computationally even simpler than the efficient regularization assisted orthogonal least square algorithm based on LOO criteria for selecting fixed-node RBF models. Another significant advantage of the proposed learning procedure is that it does not have learning hyperparameters that have to be tuned using costly cross validation. The effectiveness of the proposed PSO aided OFR construction procedure is illustrated using several examples taken from regression and classification, as well as density estimation applications.
Resumo:
This paper presents a virtual headstick system as an alternative to the conventional passive headstick for persons with limited upper extremity function. The system is composed of a pair of kinematically dissimilar master-slave robots with the master robot being operated by the user's head. At the remote site, the end-effector of the slave robot moves as if it were at the tip of an imaginary headstick attached to the user's head. A unique feature of this system is that through force-reflection, the virtual headstick provides the user with proprioceptive information as in a conventional headstick, but with an augmentation of workspace volume and additional mechanical power. This paper describes the test-bed development, system identification, bilateral control implementation, and system performance evaluation.
Resumo:
The effect of irradiation (UV-visible light) on a nematic liquid crystal doped with a photoactive azobenzene derivative was investigated. The selective irradiation results in either an E implies Z or Z implies E isomerization of the azobenzene unit. The effect of the isomerization is to cause a reversible depression of the liquid crystal to isotropic (LC implies l) phase transition temperature of the doped mixture, which can be monitored optically as an isothermal phase transition. This depression also results in a biphasic liquid crystal+isotropic region which is discussed. The authors investigate the cause and magnitude of the phase depression as a function of the amount of doped 4-butyl-4'-methoxyazobenzene (photoactive unit) in 4-cyano-4'-n-pentylbiphenyl (liquid crystal unit), and as a function of the percentage conversion of E implies Z (caused by isomerization) in the azobenzene. The photostationary state of the doped mixtures achieved by Z implies E isomerization is considered and its effect upon the transition temperature of the mixture and response time of the system is discussed. They discuss the implications of the photostationary state with regards to the reversibility of the photo-induced phase transition and hence potential applications.
Resumo:
Adaptive methods which “equidistribute” a given positive weight function are now used fairly widely for selecting discrete meshes. The disadvantage of such schemes is that the resulting mesh may not be smoothly varying. In this paper a technique is developed for equidistributing a function subject to constraints on the ratios of adjacent steps in the mesh. Given a weight function $f \geqq 0$ on an interval $[a,b]$ and constants $c$ and $K$, the method produces a mesh with points $x_0 = a,x_{j + 1} = x_j + h_j ,j = 0,1, \cdots ,n - 1$ and $x_n = b$ such that\[ \int_{xj}^{x_{j + 1} } {f \leqq c\quad {\text{and}}\quad \frac{1} {K}} \leqq \frac{{h_{j + 1} }} {{h_j }} \leqq K\quad {\text{for}}\, j = 0,1, \cdots ,n - 1 . \] A theoretical analysis of the procedure is presented, and numerical algorithms for implementing the method are given. Examples show that the procedure is effective in practice. Other types of constraints on equidistributing meshes are also discussed. The principal application of the procedure is to the solution of boundary value problems, where the weight function is generally some error indicator, and accuracy and convergence properties may depend on the smoothness of the mesh. Other practical applications include the regrading of statistical data.
Resumo:
Land-use changes can alter the spatial population structure of plant species, which may in turn affect the attractiveness of flower aggregations to different groups of pollinators at different spatial scales. To assess how pollinators respond to spatial heterogeneity of plant distributions and whether honeybees affect visitation by other pollinators we used an extensive data set comprising ten plant species and their flower visitors from five European countries. In particular we tested the hypothesis that the composition of the flower visitor community in terms of visitation frequencies by different pollinator groups were affected by the spatial plant population structure, viz. area and density measures, at a within-population (‘patch’) and among-population (‘population’) scale. We found that patch area and population density were the spatial variables that best explained the variation in visitation frequencies within the pollinator community. Honeybees had higher visitation frequencies in larger patches, while bumblebees and hoverflies had higher visitation frequencies in sparser populations. Solitary bees had higher visitation frequencies in sparser populations and smaller patches. We also tested the hypothesis that honeybees affect the composition of the pollinator community by altering the visitation frequencies of other groups of pollinators. There was a positive relationship between visitation frequencies of honeybees and bumblebees, while the relationship with hoverflies and solitary bees varied (positive, negative and no relationship) depending on the plant species under study. The overall conclusion is that the spatial structure of plant populations affects different groups of pollinators in contrasting ways at both the local (‘patch’) and the larger (‘population’) scales and, that honeybees affect the flower visitation by other pollinator groups in various ways, depending on the plant species under study. These contrasting responses emphasize the need to investigate the entire pollinator community when the effects of landscape change on plant–pollinator interactions are studied.
Resumo:
We present the results of simulations carried out with the Met Office Unified Model at 12km, 4km and 1.5km resolution for a large region centred on West Africa using several different representations of the convection processes. These span the range of resolutions from much coarser than the size of the convection processes to the cloud-system resolving and thus encompass the intermediate "grey-zone". The diurnal cycle in the extent of convective regions in the models is tested against observations from the Geostationary Earth Radiation Budget instrument on Meteosat-8. By this measure, the two best-performing simulations are a 12km model without convective parametrization, using Smagorinsky style sub-grid scale mixing in all three dimensions and a 1.5km simulations with two-dimensional Smagorinsky mixing. Of these, the 12km model produces a better match to the magnitude of the total cloud fraction but the 1.5km results in better timing for its peak value. The results suggest that the previously-reported improvement in the representation of the diurnal cycle of convective organisation in the 4km model compared to the standard 12km configuration is principally a result of the convection scheme employed rather than the improved resolution per se. The details of and implications for high-resolution model simulations are discussed.
Resumo:
Fire investigation is a challenging area for the forensic investigator. The aim of this work was to use spectral changes to paint samples to estimate the temperatures to which a paint has been heated. Five paint samples (one clay paint, two car paints, one metallic paint, and one matt emulsion) have been fully characterized by a combination of attenuated total reflectance Fourier transform infrared (ATR-IR), Raman, X-ray fluorescence spectroscopy and powder X-ray diffraction. The thermal decomposition of these paints has been investigated by means of ATR-IR and thermal gravimetric analysis. Clear temperature markers are observed in the ATR-IR spectra namely: loss of m(C = O) band, >300°C; appearance of water bands on cooling, >500°C; alterations to m(Si–O) bands due to dehydration of silicate clays, >700°C; diminution of m(CO3) and d(CO3) modes of CaCO3, >950°C. We suggest the possible use of portable ATR-IR for nondestructive, in situ analysis of paints.
Resumo:
In this paper, the concept of available potential energy (APE) density is extended to a multicomponent Boussinesq fluid with a nonlinear equation of state. As shown by previous studies, the APE density is naturally interpreted as the work against buoyancy forces that a parcel needs to perform to move from a notional reference position at which its buoyancy vanishes to its actual position; because buoyancy can be defined relative to an arbitrary reference state, so can APE density. The concept of APE density is therefore best viewed as defining a class of locally defined energy quantities, each tied to a different reference state, rather than as a single energy variable. An important result, for which a new proof is given, is that the volume integrated APE density always exceeds Lorenz’s globally defined APE, except when the reference state coincides with Lorenz’s adiabatically re-arranged reference state of minimum potential energy. A parcel reference position is systematically defined as a level of neutral buoyancy (LNB): depending on the nature of the fluid and on how the reference state is defined, a parcel may have one, none, or multiple LNB within the fluid. Multiple LNB are only possible for a multicomponent fluid whose density depends on pressure. When no LNB exists within the fluid, a parcel reference position is assigned at the minimum or maximum geopotential height. The class of APE densities thus defined admits local and global balance equations, which all exhibit a conversion with kinetic energy, a production term by boundary buoyancy fluxes, and a dissipation term by internal diffusive effects. Different reference states alter the partition between APE production and dissipation, but neither affect the net conversion between kinetic energy and APE, nor the difference between APE production and dissipation. We argue that the possibility of constructing APE-like budgets based on reference states other than Lorenz’s reference state is more important than has been previously assumed, and we illustrate the feasibility of doing so in the context of an idealised and realistic oceanic example, using as reference states one with constant density and another one defined as the horizontal mean density field; in the latter case, the resulting APE density is found to be a reasonable approximation of the APE density constructed from Lorenz’s reference state, while being computationally cheaper.
Resumo:
Bayesian analysis is given of an instrumental variable model that allows for heteroscedasticity in both the structural equation and the instrument equation. Specifically, the approach for dealing with heteroscedastic errors in Geweke (1993) is extended to the Bayesian instrumental variable estimator outlined in Rossi et al. (2005). Heteroscedasticity is treated by modelling the variance for each error using a hierarchical prior that is Gamma distributed. The computation is carried out by using a Markov chain Monte Carlo sampling algorithm with an augmented draw for the heteroscedastic case. An example using real data illustrates the approach and shows that ignoring heteroscedasticity in the instrument equation when it exists may lead to biased estimates.
Resumo:
This paper considers the utility of the concept of conscience or unconscionable conduct as a contemporary rationale for intervention in two principles applied where a person seeks to renege on an informal agreement relating to land: the principle in Rochefoucauld v Boustead; and transfers 'subject to' rights in favour of a claimant. By analysing the concept in light of our current understanding of the nature of judicial discretion and the use of general principles, it responds to arguments that unconscionability is too general a concept on which to base intervention. In doing so, it considers the nature of the discretion that is actually in issue when the court intervenes through conscience in these principles. However, the paper questions the use of constructive trusts as a response to unconscionability. It argues that there is a need, in limited circumstances, to separate the finding of unconscionability from the imposition of a constructive trust. In these limited circumstances, once unconscionability is found, the courts should have a discretion as to the remedy, modelled on that developed in the context of proprietary estoppel. The message underlying this paper is that many of the concerns expressed about unconscionability that have led to suggestions of alternative rationales for intervention can in fact be addressed whilst retaining an unconscionability analysis. Unconscionability remains a preferable rationale for intervention as it provides a common thread that links apparently separate principles and can assist our understanding of their scope.