35 resultados para 485
Resumo:
Peroxy radicals were measured onboard two scientific aircrafts during the AMMA (African Monsoon Multidisciplinary Analysis) campaign in summer 2006. This paper reports results from the flight on 16 August 2006 during which measurements of HO2 by laser induced fluorescence spectroscopy at low pressure (LIF-FAGE) and total peroxy radicals (RO2* = HO2+ΣRO2, R = organic chain) by two similar instruments based on the peroxy radical chemical amplification (PeRCA) technique were subject of a blind intercomparison. The German DLR-Falcon and the British FAAM-BAe-146 flew wing tip to wing tip for about 30 min making concurrent measurements on 2 horizontal level runs at 697 and 485 hPa over the same geographical area in Burkina Faso. A full set of supporting measurements comprising photolysis frequencies, and relevant trace gases like CO, NO, NO2, NOy, O3 and a wider range of VOCs were collected simultaneously. Results are discussed on the basis of the characteristics and limitations of the different instruments used. Generally, no data bias are identified and the RO2* data available agree quite reasonably within the instrumental errors. The [RO2*]/[HO2] ratios, which vary between 1:1 and 3:1, as well as the peroxy radical variability, concur with variations in photolysis rates and in other potential radical precursors. Model results provide additional information about dominant radical formation and loss processes.
Resumo:
In this paper stability of one-step ahead predictive controllers based on non-linear models is established. It is shown that, under conditions which can be fulfilled by most industrial plants, the closed-loop system is robustly stable in the presence of plant uncertainties and input–output constraints. There is no requirement that the plant should be open-loop stable and the analysis is valid for general forms of non-linear system representation including the case out when the problem is constraint-free. The effectiveness of controllers designed according to the algorithm analyzed in this paper is demonstrated on a recognized benchmark problem and on a simulation of a continuous-stirred tank reactor (CSTR). In both examples a radial basis function neural network is employed as the non-linear system model.
Resumo:
d(ACGTACGT), C78H84N30O32P7.20H2O, Mr (DNA) = 2170, tetragonal, P43212 (No 96), a = 42.845 (1), b = 42.845(1), c = 24.804 (1) Å, V = 45532.5 (2) Å3, z = 8,(MoK) = 0.71069 Å,µ(MoK) = 0.10 mm-1, T = 295 K, R = 0.18 for 1994 unique reflections between 5.0 and 1.9 Å resolution. The self-complementary octanucleotide d(ACGTACGT)2 has been crystallized and its structure determined to a resolution of 1.9 Å. The asymmetric unit consists of a single strand of octamer with 20 water molecules. It is only the second example of an octanucleotide having terminal A·T base pairs whose structure has been determined by X-ray crystallography. The sequence adopts the modified A-type conformation found for all octanucleotide duplexes studied to date with the helix bent by approximately 15° and an average tilt angle of 0°. Unusually the data collection was carried out using a 3 kW molybdenum sealed-tube source. The conformational details are discussed in comparison with other closely related sequences.
Resumo:
What is at stake when J. L. Austin calls poetry ‘non-serious’, and sidelines it in his speech act theory? (I). Standard explanations polarize sharply along party lines: poets (e.g. Geoffrey Hill) and critics (e.g. Christopher Ricks) are incensed, while philosophers (e.g. P. F. Strawson; John Searle) deny cause (II). Neither line is consistent with Austin's remarks, whose allusions to Plato, Aristotle and Frege are insufficiently noted (III). What Austin thinks is at stake is confusion, which he corrects apparently to the advantage of poets (IV). But what is actually at stake is the possibility of commitment and poetic integrity. We should reject what Austin offers (V).
Resumo:
The results of applying a fragment-based protein tertiary structure prediction method to the prediction of 14 CASP5 target domains are described. The method is based on the assembly of supersecondary structural fragments taken from highly resolved protein structures using a simulated annealing algorithm. A number of good predictions for proteins with novel folds were produced, although not always as the first model. For two fold recognition targets, FRAGFOLD produced the most accurate model in both cases, despite the fact that the predictions were not based on a template structure. Although clear progress has been made in improving FRAGFOLD since CASP4, the ranking of final models still seems to be the main problem that needs to be addressed before the next CASP experiment
Resumo:
Enterohaemorrhagic Escherichia coli O157 : H7 infections of man have been associated with consumption of unpasteurized goat's milk and direct contact with kid goats on petting farms, yet little is known about colonization of goats with this organism. To assess the contribution of flagella and intimin of E coli O157 : H7 in colonization of the goat, 8-week-old conventionally reared goats were inoculated orally in separate experiments with 1 X 10(10) c.f.u. of a non-verotoxigenic strain of E coli O157: H7 (strain NCTC 12900 Nal(r)), an aflagellate derivative (DMB1) and an intimin-deficient derivative (DMB2). At 24 In after inoculation, the three E coli O157 : H7 strains were shed at approximately 5 X 1 04 c.f.u. (g faeces)(-1) from all animals. Significantly fewer intimin-deficient bacteria were shed only on days 2 (P = 0(.)003) and 4 (P = 0(.)014), whereas from day 7 to 29 there were no differences. Tissues from three animals inoculated with wild-type E coli O157 : H7 strain NCTC 12900 Nalr were sampled at 24,48 and 96 In after inoculation and the organism was cultured from the large intestine of all three animals and from the duodenum and ileum of the animal examined at 96 h. Tissues were examined histologically but attaching-effacing (AE) lesions were not observed at any intestinal site of the animals examined at 24 or 48 In. However, the animal examined at 96 h, which had uniquely shed approximately 1 x 10(7) E coli O157: H7 (g faeces)(-1) for the preceding 3 days, showed a heavy, diffuse infection with cryptosporidia. and abundant, multifocal AE lesions in the distal colon, rectum and at the recto-anal junction. These AE lesions were confirmed by immunohistochemistry to be associated with E coli O157: H7.
Resumo:
Hepatitis C virus (HCV) infection is associated with dysregulation of both lipid and glucose metabolism. As well as contributing to viral replication, these perturbations influence the pathogenesis associated with the virus, including steatosis, insulin resistance, and type 2 diabetes. AMP-activated protein kinase (AMPK) plays a key role in regulation of both lipid and glucose metabolism. We show here that, in cells either infected with HCV or harboring an HCV subgenomic replicon, phosphorylation of AMPK at threonine 172 and concomitant AMPK activity are dramatically reduced. We demonstrate that this effect is mediated by activation of the serine/threonine kinase, protein kinase B, which inhibits AMPK by phosphorylating serine 485. The physiological significance of this inhibition is demonstrated by the observation that pharmacological restoration of AMPK activity not only abrogates the lipid accumulation observed in virus-infected and subgenomic replicon-harboring cells but also efficiently inhibits viral replication. These data demonstrate that inhibition of AMPK is required for HCV replication and that the restoration of AMPK activity may present a target for much needed anti-HCV therapies.
Resumo:
The persistence and decay of springtime total ozone anomalies over the entire extratropics (midlatitudes plus polar regions) is analysed using results from the Canadian Middle Atmosphere Model (CMAM), a comprehensive chemistry-climate model. As in the observations, interannual anomalies established through winter and spring persist with very high correlation coefficients (above 0.8) through summer until early autumn, while decaying in amplitude as a result of photochemical relaxation in the quiescent summertime stratosphere. The persistence and decay of the ozone anomalies in CMAM agrees extremely well with observations, even in the southern hemisphere when the model is run without heterogeneous chemistry (in which case there is no ozone hole and the seasonal cycle of ozone is quite different from observations). However in a version of CMAM with strong vertical diffusion, the northern hemisphere anomalies decay far too rapidly compared to observations. This shows that ozone anomaly persistence and decay does not depend on how the springtime anomalies are created or on their magnitude, but reflects the transport and photochemical decay in the model. The seasonality of the long-term trends over the entire extratropics is found to be explained by the persistence of the interannual anomalies, as in the observations, demonstrating that summertime ozone trends reflect winter/spring trends rather than any change in summertime ozone chemistry. However this mechanism fails in the northern hemisphere midlatitudes because of the relatively large impact, compared to observations, of the CMAM polar anomalies. As in the southern hemisphere, the influence of polar ozone loss in CMAM increases the midlatitude summertime loss, leading to a relatively weak seasonal dependence of ozone loss in the Northern Hemisphere compared to the observations.
Resumo:
We are reporting on the fabrication and electrical characterization of a novel elastomer based micro-cuff neural interface. Electrodes are gold (Au) tracks of sub-100nm thickness and are thermally evaporated on a 0.5 mm thick polydimethylsiloxane (PDMS) substrate. We investigate how electrode area and immersion in phosphate buffered saline (PBS) at 37°C influence electrode impedance. A microfluidic channel is bonded to the electrode array to form the cuff. In an acute, in-vivo, proof-of-principle recording, the device is capable of detecting light stroking and pinch of a hind leg of an anaesthetized rat.
Resumo:
Under particular large-scale atmospheric conditions, several windstorms may affect Europe within a short time period. The occurrence of such cyclone families leads to large socioeconomic impacts and cumulative losses. The serial clustering of windstorms is analyzed for the North Atlantic/western Europe. Clustering is quantified as the dispersion (ratio variance/mean) of cyclone passages over a certain area. Dispersion statistics are derived for three reanalysis data sets and a 20-run European Centre Hamburg Version 5 /Max Planck Institute Version–Ocean Model Version 1 global climate model (ECHAM5/MPI-OM1 GCM) ensemble. The dependence of the seriality on cyclone intensity is analyzed. Confirming previous studies, serial clustering is identified in reanalysis data sets primarily on both flanks and downstream regions of the North Atlantic storm track. This pattern is a robust feature in the reanalysis data sets. For the whole area, extreme cyclones cluster more than nonextreme cyclones. The ECHAM5/MPI-OM1 GCM is generally able to reproduce the spatial patterns of clustering under recent climate conditions, but some biases are identified. Under future climate conditions (A1B scenario), the GCM ensemble indicates that serial clustering may decrease over the North Atlantic storm track area and parts of western Europe. This decrease is associated with an extension of the polar jet toward Europe, which implies a tendency to a more regular occurrence of cyclones over parts of the North Atlantic Basin poleward of 50°N and western Europe. An increase of clustering of cyclones is projected south of Newfoundland. The detected shifts imply a change in the risk of occurrence of cumulative events over Europe under future climate conditions.
Resumo:
The animal gastrointestinal tract houses a large microbial community, the gut microbiota, that confers many benefits to its host, such as protection from pathogens and provision of essential metabolites. Metagenomic approaches have defined the chicken fecal microbiota in other studies, but here, we wished to assess the correlation between the metagenome and the bacterial proteome in order to better understand the healthy chicken gut microbiota. Here, we performed high-throughput sequencing of 16S rRNA gene amplicons and metaproteomics analysis of fecal samples to determine microbial gut composition and protein expression. 16 rRNA gene sequencing analysis identified Clostridiales, Bacteroidaceae, and Lactobacillaceae species as the most abundant species in the gut. For metaproteomics analysis, peptides were generated by using the Fasp method and subsequently fractionated by strong anion exchanges. Metaproteomics analysis identified 3,673 proteins. Among the most frequently identified proteins, 380 proteins belonged to Lactobacillus spp., 155 belonged to Clostridium spp., and 66 belonged to Streptococcus spp. The most frequently identified proteins were heat shock chaperones, including 349 GroEL proteins, from many bacterial species, whereas the most abundant enzymes were pyruvate kinases, as judged by the number of peptides identified per protein (spectral counting). Gene ontology and KEGG pathway analyses revealed the functions and locations of the identified proteins. The findings of both metaproteomics and 16S rRNA sequencing analyses are discussed.