17 resultados para 3D shape detection
Resumo:
Observers generally fail to recover three-dimensional shape accurately from binocular disparity. Typically, depth is overestimated at near distances and underestimated at far distances [Johnston, E. B. (1991). Systematic distortions of shape from stereopsis. Vision Research, 31, 1351–1360]. A simple prediction from this is that disparity-defined objects should appear to expand in depth when moving towards the observer, and compress in depth when moving away. However, additional information is provided when an object moves from which 3D Euclidean shape can be recovered, be this through the addition of structure from motion information [Richards, W. (1985). Structure from stereo and motion. Journal of the Optical Society of America A, 2, 343–349], or the use of non-generic strategies [Todd, J. T., & Norman, J. F. (2003). The visual perception of 3-D shape from multiple cues: Are observers capable of perceiving metric structure? Perception and Psychophysics, 65, 31–47]. Here, we investigated shape constancy for objects moving in depth. We found that to be perceived as constant in shape, objects needed to contract in depth when moving toward the observer, and expand in depth when moving away, countering the effects of incorrect distance scaling (Johnston, 1991). This is a striking example of the failure of shape con- stancy, but one that is predicted if observers neither accurately estimate object distance in order to recover Euclidean shape, nor are able to base their responses on a simpler processing strategy.
Resumo:
The challenge of moving past the classic Window Icons Menus Pointer (WIMP) interface, i.e. by turning it ‘3D’, has resulted in much research and development. To evaluate the impact of 3D on the ‘finding a target picture in a folder’ task, we built a 3D WIMP interface that allowed the systematic manipulation of visual depth, visual aides, semantic category distribution of targets versus non-targets; and the detailed measurement of lower-level stimuli features. Across two separate experiments, one large sample web-based experiment, to understand associations, and one controlled lab environment, using eye tracking to understand user focus, we investigated how visual depth, use of visual aides, use of semantic categories, and lower-level stimuli features (i.e. contrast, colour and luminance) impact how successfully participants are able to search for, and detect, the target image. Moreover in the lab-based experiment, we captured pupillometry measurements to allow consideration of the influence of increasing cognitive load as a result of either an increasing number of items on the screen, or due to the inclusion of visual depth. Our findings showed that increasing the visible layers of depth, and inclusion of converging lines, did not impact target detection times, errors, or failure rates. Low-level features, including colour, luminance, and number of edges, did correlate with differences in target detection times, errors, and failure rates. Our results also revealed that semantic sorting algorithms significantly decreased target detection times. Increased semantic contrasts between a target and its neighbours correlated with an increase in detection errors. Finally, pupillometric data did not provide evidence of any correlation between the number of visible layers of depth and pupil size, however, using structural equation modelling, we demonstrated that cognitive load does influence detection failure rates when there is luminance contrasts between the target and its surrounding neighbours. Results suggest that WIMP interaction designers should consider stimulus-driven factors, which were shown to influence the efficiency with which a target icon can be found in a 3D WIMP interface.