40 resultados para 3D hydrothermal model
Resumo:
This chapter presents techniques used for the generation of 3D digital elevation models (DEMs) from remotely sensed data. Three methods are explored and discussed—optical stereoscopic imagery, Interferometric Synthetic Aperture Radar (InSAR), and LIght Detection and Ranging (LIDAR). For each approach, the state-of-the-art presented in the literature is reviewed. Techniques involved in DEM generation are presented with accuracy evaluation. Results of DEMs reconstructed from remotely sensed data are illustrated. While the processes of DEM generation from satellite stereoscopic imagery represents a good example of passive, multi-view imaging technology, discussed in Chap. 2 of this book, InSAR and LIDAR use different principles to acquire 3D information. With regard to InSAR and LIDAR, detailed discussions are conducted in order to convey the fundamentals of both technologies.
Resumo:
Background In the UK occupational therapy pre-discharge home visits are routinely carried out as a means of facilitating safe transfer from the hospital to home. Whilst they are an integral part of practice, there is little evidence to demonstrate they have a positive outcome on the discharge process. Current issues for patients are around the speed of home visits and the lack of shared decision making in the process, resulting in less than 50 % of the specialist equipment installed actually being used by patients on follow-up. To improve practice there is an urgent need to examine other ways of conducting home visits to facilitate safe discharge. We believe that Computerised 3D Interior Design Applications (CIDAs) could be a means to support more efficient, effective and collaborative practice. A previous study explored practitioners perceptions of using CIDAs; however it is important to ascertain older adult’s views about the usability of technology and to compare findings. This study explores the perceptions of community dwelling older adults with regards to adopting and using CIDAs as an assistive tool for the home adaptations process. Methods Ten community dwelling older adults participated in individual interactive task-focused usability sessions with a customised CIDA, utilising the think-aloud protocol and individual semi-structured interviews. Template analysis was used to carry out both deductive and inductive analysis of the think-aloud and interview data. Initially, a deductive stance was adopted, using the three pre-determined high-level themes of the technology acceptance model (TAM): Perceived Usefulness (PU), Perceived Ease of Use (PEOU), Actual Use (AU). Inductive template analysis was then carried out on the data within these themes, from which a number of sub-thmes emerged. Results Regarding PU, participants believed CIDAs served as a useful visual tool and saw clear potential to facilitate shared understanding and partnership in care delivery. For PEOU, participants were able to create 3D home environments however a number of usability issues must still be addressed. The AU theme revealed the most likely usage scenario would be collaborative involving both patient and practitioner, as many participants did not feel confident or see sufficient value in using the application autonomously. Conclusions This research found that older adults perceived that CIDAs were likely to serve as a valuable tool which facilitates and enhances levels of patient/practitioner collaboration and empowerment. Older adults also suggested a redesign of the interface so that less sophisticated dexterity and motor functions are required. However, older adults were not confident, or did not see sufficient value in using the application autonomously. Future research is needed to further customise the CIDA software, in line with the outcomes of this study, and to explore the potential of collaborative application patient/practitioner-based deployment.
Resumo:
A new algorithm is described for refining the pose of a model of a rigid object, to conform more accurately to the image structure. Elemental 3D forces are considered to act on the model. These are derived from directional derivatives of the image local to the projected model features. The convergence properties of the algorithm is investigated and compared to a previous technique. Its use in a video sequence of a cluttered outdoor traffic scene is also illustrated and assessed.
Resumo:
A driver controls a car by turning the steering wheel or by pressing on the accelerator or the brake. These actions are modelled by Gaussian processes, leading to a stochastic model for the motion of the car. The stochastic model is the basis of a new filter for tracking and predicting the motion of the car, using measurements obtained by fitting a rigid 3D model to a monocular sequence of video images. Experiments show that the filter easily outperforms traditional filters.
Resumo:
Different optimization methods can be employed to optimize a numerical estimate for the match between an instantiated object model and an image. In order to take advantage of gradient-based optimization methods, perspective inversion must be used in this context. We show that convergence can be very fast by extrapolating to maximum goodness-of-fit with Newton's method. This approach is related to methods which either maximize a similar goodness-of-fit measure without use of gradient information, or else minimize distances between projected model lines and image features. Newton's method combines the accuracy of the former approach with the speed of convergence of the latter.
Resumo:
Data assimilation is a sophisticated mathematical technique for combining observational data with model predictions to produce state and parameter estimates that most accurately approximate the current and future states of the true system. The technique is commonly used in atmospheric and oceanic modelling, combining empirical observations with model predictions to produce more accurate and well-calibrated forecasts. Here, we consider a novel application within a coastal environment and describe how the method can also be used to deliver improved estimates of uncertain morphodynamic model parameters. This is achieved using a technique known as state augmentation. Earlier applications of state augmentation have typically employed the 4D-Var, Kalman filter or ensemble Kalman filter assimilation schemes. Our new method is based on a computationally inexpensive 3D-Var scheme, where the specification of the error covariance matrices is crucial for success. A simple 1D model of bed-form propagation is used to demonstrate the method. The scheme is capable of recovering near-perfect parameter values and, therefore, improves the capability of our model to predict future bathymetry. Such positive results suggest the potential for application to more complex morphodynamic models.
Resumo:
MOTIVATION: The accurate prediction of the quality of 3D models is a key component of successful protein tertiary structure prediction methods. Currently, clustering or consensus based Model Quality Assessment Programs (MQAPs) are the most accurate methods for predicting 3D model quality; however they are often CPU intensive as they carry out multiple structural alignments in order to compare numerous models. In this study, we describe ModFOLDclustQ - a novel MQAP that compares 3D models of proteins without the need for CPU intensive structural alignments by utilising the Q measure for model comparisons. The ModFOLDclustQ method is benchmarked against the top established methods in terms of both accuracy and speed. In addition, the ModFOLDclustQ scores are combined with those from our older ModFOLDclust method to form a new method, ModFOLDclust2, that aims to provide increased prediction accuracy with negligible computational overhead. RESULTS: The ModFOLDclustQ method is competitive with leading clustering based MQAPs for the prediction of global model quality, yet it is up to 150 times faster than the previous version of the ModFOLDclust method at comparing models of small proteins (<60 residues) and over 5 times faster at comparing models of large proteins (>800 residues). Furthermore, a significant improvement in accuracy can be gained over the previous clustering based MQAPs by combining the scores from ModFOLDclustQ and ModFOLDclust to form the new ModFOLDclust2 method, with little impact on the overall time taken for each prediction. AVAILABILITY: The ModFOLDclustQ and ModFOLDclust2 methods are available to download from: http://www.reading.ac.uk/bioinf/downloads/ CONTACT: l.j.mcguffin@reading.ac.uk.
Resumo:
The development of effective methods for predicting the quality of three-dimensional (3D) models is fundamentally important for the success of tertiary structure (TS) prediction strategies. Since CASP7, the Quality Assessment (QA) category has existed to gauge the ability of various model quality assessment programs (MQAPs) at predicting the relative quality of individual 3D models. For the CASP8 experiment, automated predictions were submitted in the QA category using two methods from the ModFOLD server-ModFOLD version 1.1 and ModFOLDclust. ModFOLD version 1.1 is a single-model machine learning based method, which was used for automated predictions of global model quality (QMODE1). ModFOLDclust is a simple clustering based method, which was used for automated predictions of both global and local quality (QMODE2). In addition, manual predictions of model quality were made using ModFOLD version 2.0-an experimental method that combines the scores from ModFOLDclust and ModFOLD v1.1. Predictions from the ModFOLDclust method were the most successful of the three in terms of the global model quality, whilst the ModFOLD v1.1 method was comparable in performance to other single-model based methods. In addition, the ModFOLDclust method performed well at predicting the per-residue, or local, model quality scores. Predictions of the per-residue errors in our own 3D models, selected using the ModFOLD v2.0 method, were also the most accurate compared with those from other methods. All of the MQAPs described are publicly accessible via the ModFOLD server at: http://www.reading.ac.uk/bioinf/ModFOLD/. The methods are also freely available to download from: http://www.reading.ac.uk/bioinf/downloads/.
Resumo:
Background: Selecting the highest quality 3D model of a protein structure from a number of alternatives remains an important challenge in the field of structural bioinformatics. Many Model Quality Assessment Programs (MQAPs) have been developed which adopt various strategies in order to tackle this problem, ranging from the so called "true" MQAPs capable of producing a single energy score based on a single model, to methods which rely on structural comparisons of multiple models or additional information from meta-servers. However, it is clear that no current method can separate the highest accuracy models from the lowest consistently. In this paper, a number of the top performing MQAP methods are benchmarked in the context of the potential value that they add to protein fold recognition. Two novel methods are also described: ModSSEA, which based on the alignment of predicted secondary structure elements and ModFOLD which combines several true MQAP methods using an artificial neural network. Results: The ModSSEA method is found to be an effective model quality assessment program for ranking multiple models from many servers, however further accuracy can be gained by using the consensus approach of ModFOLD. The ModFOLD method is shown to significantly outperform the true MQAPs tested and is competitive with methods which make use of clustering or additional information from multiple servers. Several of the true MQAPs are also shown to add value to most individual fold recognition servers by improving model selection, when applied as a post filter in order to re-rank models. Conclusion: MQAPs should be benchmarked appropriately for the practical context in which they are intended to be used. Clustering based methods are the top performing MQAPs where many models are available from many servers; however, they often do not add value to individual fold recognition servers when limited models are available. Conversely, the true MQAP methods tested can often be used as effective post filters for re-ranking few models from individual fold recognition servers and further improvements can be achieved using a consensus of these methods.
Resumo:
Two new metal-organic based polymeric complexes, [Cu-4(O2CCH2CO2)(4)(L)].7H(2)O (1) and [CO2(O2CCH2CO2)(2)(L)].2H(2)O (2) [L = hexamethylenetetramine (urotropine)], have been synthesized and characterized by X-ray crystal structure determination and magnetic studies. Complex 1 is a 1D coordination polymer comprising a carboxylato, bridged Cu-4 moiety linked by a tetradentate bridging urotropine. Complex 2 is a 3D coordination polymer made of pseudo-two-dimensional layers of Co(II) ions linked by malonate anions in syn-anticonformation which are bridged by bidentate urotropine in trans fashion, Complex 1 crystallizes in the orthothombic system, space group Pmmn, with a = 14,80(2) Angstrom, b = 14.54(2) Angstrom, c = 7.325(10) Angstrom, beta = 90degrees, and Z = 4. Complex 2 crystallizes in the orthorhombic system, space group Imm2, a = 7.584(11) Angstrom, b = 15.80(2) Angstrom, c = 6.939(13) Angstrom, beta = 90.10degrees(1), and Z = 4. Variable temperature (300-2 K) magnetic behavior reveals the existence of ferro- and antiferromagnetic interactions in 1 and only antiferromagnetic interactions in 2. The best fitted parameters for complex 1 are J = 13.5 cm(-1), J = -18.1 cm(-1), and g = 2.14 considering only intra-Cu-4 interactions through carboxylate and urotropine pathways. In case of complex 2, the fit of the magnetic data considering intralayer interaction through carboxylate pathway as well as interlayer interaction via urotropine pathway gave no satisfactory result at this moment using any model known due to considerable orbital contribution of Co(II) ions to the magnetic moment and its complicated structure. Assuming isolated Co(II) ions (without any coupling, J = 0) the shape of the chi(M)T curve fits well with experimental data except at very low temperatures.
Resumo:
This paper describes the SIMULINK implementation of a constrained predictive control algorithm based on quadratic programming and linear state space models, and its application to a laboratory-scale 3D crane system. The algorithm is compatible with Real Time. Windows Target and, in the case of the crane system, it can be executed with a sampling period of 0.01 s and a prediction horizon of up to 300 samples, using a linear state space model with 3 inputs, 5 outputs and 13 states.
Resumo:
In this paper we are mainly concerned with the development of efficient computer models capable of accurately predicting the propagation of low-to-middle frequency sound in the sea, in axially symmetric (2D) and in fully 3D environments. The major physical features of the problem, i.e. a variable bottom topography, elastic properties of the subbottom structure, volume attenuation and other range inhomogeneities are efficiently treated. The computer models presented are based on normal mode solutions of the Helmholtz equation on the one hand, and on various types of numerical schemes for parabolic approximations of the Helmholtz equation on the other. A new coupled mode code is introduced to model sound propagation in range-dependent ocean environments with variable bottom topography, where the effects of an elastic bottom, of volume attenuation, surface and bottom roughness are taken into account. New computer models based on finite difference and finite element techniques for the numerical solution of parabolic approximations are also presented. They include an efficient modeling of the bottom influence via impedance boundary conditions, they cover wide angle propagation, elastic bottom effects, variable bottom topography and reverberation effects. All the models are validated on several benchmark problems and versus experimental data. Results thus obtained were compared with analogous results from standard codes in the literature.
Resumo:
The analysis-error variance of a 3D-FGAT assimilation is examined analytically using a simple scalar equation. It is shown that the analysis-error variance may be greater than the error variances of the inputs. The results are illustrated numerically with a scalar example and a shallow-water model.
Resumo:
We present a novel algorithm for joint state-parameter estimation using sequential three dimensional variational data assimilation (3D Var) and demonstrate its application in the context of morphodynamic modelling using an idealised two parameter 1D sediment transport model. The new scheme combines a static representation of the state background error covariances with a flow dependent approximation of the state-parameter cross-covariances. For the case presented here, this involves calculating a local finite difference approximation of the gradient of the model with respect to the parameters. The new method is easy to implement and computationally inexpensive to run. Experimental results are positive with the scheme able to recover the model parameters to a high level of accuracy. We expect that there is potential for successful application of this new methodology to larger, more realistic models with more complex parameterisations.
Resumo:
This paper presents an enhanced hypothesis verification strategy for 3D object recognition. A new learning methodology is presented which integrates the traditional dichotomic object-centred and appearance-based representations in computer vision giving improved hypothesis verification under iconic matching. The "appearance" of a 3D object is learnt using an eigenspace representation obtained as it is tracked through a scene. The feature representation implicitly models the background and the objects observed enabling the segmentation of the objects from the background. The method is shown to enhance model-based tracking, particularly in the presence of clutter and occlusion, and to provide a basis for identification. The unified approach is discussed in the context of the traffic surveillance domain. The approach is demonstrated on real-world image sequences and compared to previous (edge-based) iconic evaluation techniques.