17 resultados para 279900 Other Biological Sciences


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Unlike most other biological species, humans can use cultural innovations to occupy a range of environments, raising the intriguing question of whether human migrations move relatively independently of habitat or show preferences for familiar ones. The Bantu expansion that swept out of West Central Africa beginning ∼5,000 y ago is one of the most influential cultural events of its kind, eventually spreading over a vast geographical area a new way of life in which farming played an increasingly important role. We use a new dated phylogeny of ∼400 Bantu languages to show that migrating Bantu-speaking populations did not expand from their ancestral homeland in a “random walk” but, rather, followed emerging savannah corridors, with rainforest habitats repeatedly imposing temporal barriers to movement. When populations did move from savannah into rainforest, rates of migration were slowed, delaying the occupation of the rainforest by on average 300 y, compared with similar migratory movements exclusively within savannah or within rainforest by established rainforest populations. Despite unmatched abilities to produce innovations culturally, unfamiliar habitats significantly alter the route and pace of human dispersals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Drastic biodiversity declines have raised concerns about the deterioration of ecosystem functions and have motivated much recent research on the relationship between species diversity and ecosystem functioning. A functional trait framework has been proposed to improve the mechanistic understanding of this relationship, but this has rarely been tested for organisms other than plants. We analysed eight datasets, including five animal groups, to examine how well a trait-based approach, compared with a more traditional taxonomic approach, predicts seven ecosystem functions below- and above-ground. Trait-based indices consistently provided greater explanatory power than species richness or abundance. The frequency distributions of single or multiple traits in the community were the best predictors of ecosystem functioning. This implies that the ecosystem functions we investigated were underpinned by the combination of trait identities (i.e. single-trait indices) and trait complementarity (i.e. multi-trait indices) in the communities. Our study provides new insights into the general mechanisms that link biodiversity to ecosystem functioning in natural animal communities and suggests that the observed responses were due to the identity and dominance patterns of the trait composition rather than the number or abundance of species per se.