64 resultados para 1839 Storm


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new 'storm-tracking approach' to analysing the prediction of storms by different forecast systems has recently been developed. This paper provides a brief illustration of the type of results/information that can be obtained using the approach. It also describes in detail how eScience methodologies have been used to help apply the storm-tracking approach to very large datasets

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The accurate prediction of storms is vital to the oil and gas sector for the management of their operations. An overview of research exploring the prediction of storms by ensemble prediction systems is presented and its application to the oil and gas sector is discussed. The analysis method used requires larger amounts of data storage and computer processing time than other more conventional analysis methods. To overcome these difficulties eScience techniques have been utilised. These techniques potentially have applications to the oil and gas sector to help incorporate environmental data into their information systems

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A high resolution regional atmosphere model is used to investigate the sensitivity of the North Atlantic storm track to the spatial and temporal resolution of the sea surface temperature (SST) data used as a lower boundary condition. The model is run over an unusually large domain covering all of the North Atlantic and Europe, and is shown to produce a very good simulation of the observed storm track structure. The model is forced at the lateral boundaries with 15–20 years of data from the ERA-40 reanalysis, and at the lower boundary by SST data of differing resolution. The impacts of increasing spatial and temporal resolution are assessed separately, and in both cases increasing the resolution leads to subtle, but significant changes in the storm track. In some, but not all cases these changes act to reduce the small storm track biases seen in the model when it is forced with low-resolution SSTs. In addition there are several clear mesoscale responses to increased spatial SST resolution, with surface heat fluxes and convective precipitation increasing by 10–20% along the Gulf Stream SST gradient.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Severe wind storms are one of the major natural hazards in the extratropics and inflict substantial economic damages and even casualties. Insured storm-related losses depend on (i) the frequency, nature and dynamics of storms, (ii) the vulnerability of the values at risk, (iii) the geographical distribution of these values, and (iv) the particular conditions of the risk transfer. It is thus of great importance to assess the impact of climate change on future storm losses. To this end, the current study employs—to our knowledge for the first time—a coupled approach, using output from high-resolution regional climate model scenarios for the European sector to drive an operational insurance loss model. An ensemble of coupled climate-damage scenarios is used to provide an estimate of the inherent uncertainties. Output of two state-of-the-art global climate models (HadAM3, ECHAM5) is used for present (1961–1990) and future climates (2071–2100, SRES A2 scenario). These serve as boundary data for two nested regional climate models with a sophisticated gust parametrizations (CLM, CHRM). For validation and calibration purposes, an additional simulation is undertaken with the CHRM driven by the ERA40 reanalysis. The operational insurance model (Swiss Re) uses a European-wide damage function, an average vulnerability curve for all risk types, and contains the actual value distribution of a complete European market portfolio. The coupling between climate and damage models is based on daily maxima of 10 m gust winds, and the strategy adopted consists of three main steps: (i) development and application of a pragmatic selection criterion to retrieve significant storm events, (ii) generation of a probabilistic event set using a Monte-Carlo approach in the hazard module of the insurance model, and (iii) calibration of the simulated annual expected losses with a historic loss data base. The climate models considered agree regarding an increase in the intensity of extreme storms in a band across central Europe (stretching from southern UK and northern France to Denmark, northern Germany into eastern Europe). This effect increases with event strength, and rare storms show the largest climate change sensitivity, but are also beset with the largest uncertainties. Wind gusts decrease over northern Scandinavia and Southern Europe. Highest intra-ensemble variability is simulated for Ireland, the UK, the Mediterranean, and parts of Eastern Europe. The resulting changes on European-wide losses over the 110-year period are positive for all layers and all model runs considered and amount to 44% (annual expected loss), 23% (10 years loss), 50% (30 years loss), and 104% (100 years loss). There is a disproportionate increase in losses for rare high-impact events. The changes result from increases in both severity and frequency of wind gusts. Considerable geographical variability of the expected losses exists, with Denmark and Germany experiencing the largest loss increases (116% and 114%, respectively). All countries considered except for Ireland (−22%) experience some loss increases. Some ramifications of these results for the socio-economic sector are discussed, and future avenues for research are highlighted. The technique introduced in this study and its application to realistic market portfolios offer exciting prospects for future research on the impact of climate change that is relevant for policy makers, scientists and economists.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Understanding and predicting changes in storm tracks over longer time scales is a challenging problem, particularly in the North Atlantic. This is due in part to the complex range of forcings (land–sea contrast, orography, sea surface temperatures, etc.) that combine to produce the structure of the storm track. The impact of land–sea contrast and midlatitude orography on the North Atlantic storm track is investigated through a hierarchy of GCM simulations using idealized and “semirealistic” boundary conditions in a high-resolution version of the Hadley Centre atmosphere model (HadAM3). This framework captures the large-scale essence of features such as the North and South American continents, Eurasia, and the Rocky Mountains, enabling the results to be applied more directly to realistic modeling situations than was possible with previous idealized studies. The physical processes by which the forcing mechanisms impact the large-scale flow and the midlatitude storm tracks are discussed. The characteristics of the North American continent are found to be very important in generating the structure of the North Atlantic storm track. In particular, the southwest–northeast tilt in the upper tropospheric jet produced by southward deflection of the westerly flow incident on the Rocky Mountains leads to enhanced storm development along an axis close to that of the continent’s eastern coastline. The approximately triangular shape of North America also enables a cold pool of air to develop in the northeast, intensifying the surface temperature contrast across the eastern coastline, consistent with further enhancements of baroclinicity and storm growth along the same axis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Atmospheric general circulation model experiments have been performed to investigate how the significant zonal asymmetry in the Southern Hemisphere (SH) winter storm track is forced by sea surface temperature (SST) and orography. An experiment with zonally symmetric tropical SSTs expands the SH upper-tropospheric storm track poleward and eastward and destroys its spiral structure. Diagnosis suggests that these aspects of the observed storm track result from Rossby wave propagation from a wave source in the Indian Ocean region associated with the monsoon there. The lower-tropospheric storm track is not sensitive to this forcing. However, an experiment with zonally symmetric midlatitude SSTs exhibits a marked reduction in the magnitude of the maximum intensity of the lower-tropospheric storm track associated with reduced SST gradients in the western Indian Ocean. Experiments without the elevation of the South African Plateau or the Andes show reductions in the intensity of the major storm track downstream of them due to reduced cyclogenesis associated with the topography. These results suggest that the zonal asymmetry of the SH winter storm track is mainly established by stationary waves excited by zonal asymmetry in tropical SST in the upper troposphere and by local SST gradients in the lower troposphere, and that it is modified through cyclogenesis associated with the topography of South Africa and South America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The North Pacific and Bering Sea regions represent loci of cyclogenesis and storm track activity. In this paper climatological properties of extratropical storms in the North Pacific/Bering Sea are presented based upon aggregate statistics of individual storm tracks calculated by means of a feature-tracking algorithm run using NCEP–NCAR reanalysis data from 1948/49 to 2008, provided by the NOAA/Earth System Research Laboratory and the Cooperative Institute for Research in Environmental Sciences, Climate Diagnostics Center. Storm identification is based on the 850-hPa relative vorticity field (ζ) instead of the often-used mean sea level pressure; ζ is a prognostic field, a good indicator of synoptic-scale dynamics, and is directly related to the wind speed. Emphasis extends beyond winter to provide detailed consideration of all seasons. Results show that the interseasonal variability is not as large during the spring and autumn seasons. Most of the storm variables—genesis, intensity, track density—exhibited a maxima pattern that was oriented along a zonal axis. From season to season this axis underwent a north–south shift and, in some cases, a rotation to the northeast. This was determined to be a result of zonal heating variations and midtropospheric moisture patterns. Barotropic processes have an influence in shaping the downstream end of storm tracks and, together with the blocking influence of the coastal orography of northwest North America, result in high lysis concentrations, effectively making the Gulf of Alaska the “graveyard” of Pacific storms. Summer storms tended to be longest in duration. Temporal trends tended to be weak over the study area. SST did not emerge as a major cyclogenesis control in the Gulf of Alaska.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The suite of SECCHI optical imaging instruments on the STEREO-A spacecraft is used to track a solar storm, consisting of several coronal mass ejections (CMEs) and other coronal loops, as it propagates from the Sun into the heliosphere during May 2007. The 3-D propagation path of the largest interplanetary CME (ICME) is determined from the observations made by the SECCHI Heliospheric Imager (HI) on STEREO-A (HI-1/2A). Two parts of the CME are tracked through the SECCHI images, a bright loop and a V-shaped feature located at the rear of the event. We show that these two structures could be the result of line-of-sight integration of the light scattered by electrons located on a single flux rope. In addition to being imaged by HI, the CME is observed simultaneously by the plasma and magnetic field experiments on the Venus Express and MESSENGER spacecraft. The imaged loop and V-shaped structure bound, as expected, the flux rope observed in situ. The SECCHI images reveal that the leading loop-like structure propagated faster than the V-shaped structure, and a decrease in in situ CME speed occurred during the passage of the flux rope.We interpret this as the result of the continuous radial expansion of the flux rope as it progressed outward through the interplanetary medium. An expansion speed in the radial direction of ~30 km s-1 is obtained directly from the SECCHI-HI images and is in agreement with the difference in speed of the two structures observed in situ. This paper shows that the flux rope location can be determined from white light images, which could have important space weather applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We use proper orthogonal decomposition (POD) to study a transient teleconnection event at the onset of the 2001 planet-encircling dust storm on Mars, in terms of empirical orthogonal functions (EOFs). There are several differences between this and previous studies of atmospheric events using EOFs. First, instead of using a single variable such as surface pressure or geopotential height on a given pressure surface, we use a dataset describing the evolution in time of global and fully three-dimensional atmospheric fields such as horizontal velocity and temperature. These fields are produced by assimilating Thermal Emission Spectrometer observations from NASA's Mars Global Surveyor spacecraft into a Mars general circulation model. We use total atmospheric energy (TE) as a physically meaningful quantity which weights the state variables. Second, instead of adopting the EOFs to define teleconnection patterns as planetary-scale correlations that explain a large portion of long time-scale variability, we use EOFs to understand transient processes due to localised heating perturbations that have implications for the atmospheric circulation over distant regions. The localised perturbation is given by anomalous heating due to the enhanced presence of dust around the northern edge of the Hellas Planitia basin on Mars. We show that the localised disturbance is seemingly restricted to a small number (a few tens) of EOFs. These can be classified as low-order, transitional, or high-order EOFs according to the TE amount they explain throughout the event. Despite the global character of the EOFs, they show the capability of accounting for the localised effects of the perturbation via the presence of specific centres of action. We finally discuss possible applications for the study of terrestrial phenomena with similar characteristics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structure and dynamics of potential vorticity (PV) anomalies generated by convective storms is investigated both theoretically and in a numerical model case study. Linear theory suggests that if the storm-induced heating is on a sufficiently small scale (relative to the Rossby radius of deformation), and the environment contains moderate vertical wind shear (of order 1 m s(-1) km(-1)), then the dominant mode of a diabatically generated PV anomaly is a horizontally oriented dipole. The horizontal dipoles are typically of O(10 PVU), compared with the O(1 PVU) vertical dipoles that have been studied extensively throughout the literature. Furthermore, the horizontal PV dipoles are realized almost entirely as relative vorticity anomalies (on a time-scale of the order of tens of minutes after the heating has been turned on). The analysis of horizontal PV dipoles offers a new perspective on the vorticity dynamics of individual convective cells, implying that moist processes play a role in the maintenance of vertical vorticity in the convective storm environment.