26 resultados para 1351


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two mononuclear complexes of manganese(II), [Mn(OCN)(2)(phen)(2)] 1 and [Mn(NCO)(2)(bpy)(2)] 2 [1,10-phenanthroline (phen); 2,2'-bipyridine (bpy)], have been synthesized and characterized by single crystal X-ray analysis, infra-red spectroscopy and magnetic studies. The coordination structure of complex 2 is already reported. The cyanate anions are pendent in both the complexes. In 1, cyanate anion links manganese(II) through O-atom, whereas in 2 it coordinates through N-atom. The mononuclear fragments of 1 are built up to a supramolecular lamellar 3D architecture by pi-pi interactions only. On the other hand, mononuclear fragments of 2 are assembled to a 2D supramolecular brick-wall architecture by C-H-... pi interactions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Oxidation is an almost ubiquitous feature of inflammatory reactions. We discuss the development of nanocarriers that respond to the presence of oxidants with profound physical reorganization, which could in perspective allow their use for delivering anti-inflammatory principles in an inflammation-responsive fashion. We also present a study demonstrating that the response of polysulfide nanoparticles has a bulk character, i.e., the odixation reactions happen homogeneously throughout the nanoparticles, and not interfacially.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There is emerging evidence to show that high levels of NEFA contribute to endothelial dysfunction and impaired insulin sensitivity. However, the impact of NEFA composition remains unclear. A total of ten healthy men consumed test drinks containing 50 g of palm stearin (rich in SFA) or high-oleic sunflower oil (rich in MUFA) on separate occasions; a third day included no fat as a control. The fats were emulsified into chocolate drinks and given as a bolus (approximately 10 g fat) at baseline followed by smaller amounts (approximately 3 g fat) every 30 min throughout the 6 h study day. An intravenous heparin infusion was initiated 2 h after the bolus, which resulted in a three- to fourfold increase in circulating NEFA level from baseline. Mean arterial stiffness as measured by digital volume pulse was higher during the consumption of SFA (P,0·001) but not MUFA (P¼0·089) compared with the control. Overall insulin and gastric inhibitory peptide response was greater during the consumption of both fats compared with the control (P,0·001); there was a second insulin peak in response to MUFA unlike SFA. Consumption of SFA resulted in higher levels of soluble intercellular adhesion molecule-1 (sI-CAM) at 330 min than that of MUFA or control (P#0·048). There was no effect of the test drinks on glucose, total nitrite, plasminogen activator inhibitor-1 or endothelin-1 concentrations. The present study indicates a potential negative impact of elevated NEFA derived from the consumption of SFA on arterial stiffness and sI-CAM levels. More studies are needed to fully investigate the impact of NEFA composition on risk factors for CVD.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Long-term monitoring data from eastern North America and Europe indicate a link between increased dissolved organic carbon (DOC) concentrations in surface waters over the last two decades and decreased atmospheric pollutant and marine sulphur (S) deposition. The hypothesis is that decreased acidity and ionic strength associated with declining S deposition has increased the solubility of DOC. However, the sign and magnitude of DOC trends have varied between sites, and in some cases at sites where S deposition has declined, no significant increase in DOC has been observed, creating uncertainty about the causal mechanisms driving the observed trends. In this paper, we demonstrate chemical regulation of DOC release from organic soils in batch experiments caused by changes in acidity and conductivity (measured as a proxy for ionic strength) associated with controlled SO42− additions. DOC release from the top 10 cm of the O-horizon of organo-mineral soils and peats decreased by 21–60% in response to additions of 0–437 µeq SO42− l−1 sulphuric acid (H2SO4) and neutral sea-salt solutions (containing Na+, Mg2+, Cl−, SO42−) over a 20-hour extraction period. A significant decrease in the proportion of the acid-sensitive coloured aromatic humic acids (measured by specific ultra-violet absorbance (SUVA) at 254 nm) was also found with increasing acidity (P < 0.05) in most, but not all, soils, confirming that DOC quality, as well as quantity, changed with SO42− additions. DOC release appeared to be more sensitive to increased acidity than to increased conductivity. By comparing the change in DOC release with bulk soil properties, we found that DOC release from the O-horizon of organo-mineral soils and semi-confined peats, which contained greater exchangeable aluminium (Al) and had lower base saturation (BS), were more sensitive to SO42− additions than DOC release from blanket peats with low concentrations of exchangeable Al and greater BS. Therefore, variation in soil type and acid/base status between sites may partly explain the difference in the magnitude of DOC changes seen at different sites where declines in S deposition have been similar.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The application of oxygen isotope ratios ({delta}18O) from freshwater bivalves as a proxy for river discharge conditions in the Rhine and Meuse rivers is investigated. We compared a dataset of water temperature and water {delta}18O values with a selection of recent shell {delta}18O records for two species of the genus Unio in order to establish: (1) whether differences between the rivers in water {delta}18O values, reflecting river discharge conditions, are recorded in unionid shells; and (2) to what extent ecological parameters influence the accuracy of bivalve shell {delta}18O values as proxies of seasonal, water oxygen isotope conditions in these rivers. The results show that shells from the two rivers differ significantly in {delta}18O values, reflecting different source waters for these two rivers. The seasonal shell {delta}18O records show truncated sinusoidal patterns with narrow peaks and wide troughs, caused by temperature fractionation and winter growth cessation. Interannual growth rate reconstructions show an ontogenetic growth rate decrease. Growth lines in the shell often, but not always, coincide with winter growth cessations in the {delta}18O record, suggesting that growth cessations in the shell {delta}18O records are a better age estimator than counting internal growth lines. Seasonal predicted and measured {delta}18O values correspond well, supporting the hypothesis that these unionids precipitate their shells in oxygen isotopic equilibrium. This means that (sub-) fossil unionids can be used to reconstruct spring-summer river discharge conditions, such as Meuse low-discharge events caused by droughts and Rhine meltwater-influx events caused by melting of snow in the Alps.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report rotation of a single director in a nematic monodomain, acrylate based side-chain elastomer which was subjected to mechanical fields applied at angles in the range to the director, , present at the time of network formation. Time and spatially resolving wide angle X-ray scattering, together with polarised light microscopy measurements revealed a pronounced, almost discontinuous switching mode at a critical extension as the strain was applied at angles approaching to , whereas a more continuous rotation was seen when the strain was applied at more acute angles. This director reorientation was more or less uniform across the complete sample and was accompanied by a modest decrease in orientation parameter . At strains sufficient to induce switching there was some continuous distribution of director orientations with fluctuations of 10 although there was no evidence for any localised director inhomogenities such as domain formation. The observed deformation behaviour of these acrylate-based nematic monodomains was in accord with the predictions of a theory developed by Bladon et al., in that the complete set of data could be accounted for through a single parameter describing the chain anisotropy. The experimentally deduced chain anisotropy parameter was in broad agreement with that obtained from small-angle neutron scattering procedures, but was somewhat greater than that obtained by spontaneous shape changes at the nematic-isotropic transition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Although tactile representations of the two body sides are initially segregated into opposite hemispheres of the brain, behavioural interactions between body sides exist and can be revealed under conditions of tactile double simultaneous stimulation (DSS) at the hands. Here we examined to what extent vision can affect body side segregation in touch. To this aim, we changed hand-related visual input while participants performed a go/no-go task to detect a tactile stimulus delivered to one target finger (e.g., right index), stimulated alone or with a concurrent non-target finger either on the same hand (e.g., right middle finger) or on the other hand (e.g., left index finger = homologous; left middle finger = non-homologous). Across experiments, the two hands were visible or occluded from view (Experiment 1), images of the two hands were either merged using a morphing technique (Experiment 2), or were shown in a compatible vs incompatible position with respect to the actual posture (Experiment 3). Overall, the results showed reliable interference effects of DSS, as compared to target-only stimulation. This interference varied as a function of which non-target finger was stimulated, and emerged both within and between hands. These results imply that the competition between tactile events is not clearly segregated across body sides. Crucially, non-informative vision of the hand affected overall tactile performance only when a visual/proprioceptive conflict was present, while neither congruent nor morphed hand vision affected tactile DSS interference. This suggests that DSS operates at a tactile processing stage in which interactions between body sides can occur regardless of the available visual input from the body.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Adequate contact with the soil is essential for water and nutrient adsorption by plant roots, but the determination of root–soil contact is a challenging task because it is difficult to visualize roots in situ and quantify their interactions with the soil at the scale of micrometres. A method to determine root–soil contact using X-ray microtomography was developed. Contact areas were determined from 3D volumetric images using segmentation and iso-surface determination tools. The accuracy of the method was tested with physical model systems of contact between two objects (phantoms). Volumes, surface areas and contact areas calculated from the measured phantoms were compared with those estimated from image analysis. The volume was accurate to within 0.3%, the surface area to within 2–4%, and the contact area to within 2.5%. Maize and lupin roots were grown in soil (<2 mm) and vermiculite at matric potentials of −0.03 and −1.6 MPa and in aggregate fractions of 4–2, 2–1, 1–0.5 and < 0.5 mm at a matric potential of −0.03 MPa. The contact of the roots with their growth medium was determined from 3D volumetric images. Macroporosity (>70 µm) of the soil sieved to different aggregate fractions was calculated from binarized data. Root-soil contact was greater in soil than in vermiculite and increased with decreasing aggregate or particle size. The differences in root–soil contact could not be explained solely by the decrease in porosity with decreasing aggregate size but may also result from changes in particle and aggregate packing around the root.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Peatland habitats are important carbon stocks that also have the potential to be significant sources of greenhouse gases, particularly when subject to changes such as artificial drainage and application of fertilizer. Models aiming to estimate greenhouse gas release from peatlands require an accurate estimate of the diffusion coefficient of gas transport through soil (Ds). The availability of specific measurements for peatland soils is currently limited. This study measured Ds for a peat soil with an overlying clay horizon and compared values with those from widely available models. The Ds value of a sandy loam reference soil was measured for comparison. Using the Currie (1960) method, Ds was measured between an air-filled porosity (ϵ) range of 0 and 0.5 cm3 cm−3. Values of Ds for the peat cores ranged between 3.2 × 10−4 and 4.4 × 10−3 m2 hour−1, for loamy clay cores between 0 and 4.7 × 10−3 m2 hour−1 and for the sandy reference soil they were between 5.4 × 10−4 and 3.4 × 10−3 m2 hour−1. The agreement of measured and modelled values of relative diffusivity (Ds/D0, with D0 the diffusion coefficient through free air) varied with soil type; however, the Campbell (1985) model provided the best replication of measured values for all soils. This research therefore suggests that the use of the Campbell model in the absence of accurately measured Ds and porosity values for a study soil would be appropriate. Future research into methods to reduce shrinkage of peat during measurement and therefore allow measurement of Ds for a greater range of ϵ would be beneficial.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Finnish Meteorological Institute, in collaboration with the University of Helsinki, has established a new ground-based remote-sensing network in Finland. The network consists of five topographically, ecologically and climatically different sites distributed from southern to northern Finland. The main goal of the network is to monitor air pollution and boundary layer properties in near real time, with a Doppler lidar and ceilometer at each site. In addition to these operational tasks, two sites are members of the Aerosols, Clouds and Trace gases Research InfraStructure Network (ACTRIS); a Ka band cloud radar at Sodankylä will provide cloud retrievals within CloudNet, and a multi-wavelength Raman lidar, PollyXT (POrtabLe Lidar sYstem eXTended), in Kuopio provides optical and microphysical aerosol properties through EARLINET (the European Aerosol Research Lidar Network). Three C-band weather radars are located in the Helsinki metropolitan area and are deployed for operational and research applications. We performed two inter-comparison campaigns to investigate the Doppler lidar performance, compare the backscatter signal and wind profiles, and to optimize the lidar sensitivity through adjusting the telescope focus length and data-integration time to ensure sufficient signal-to-noise ratio (SNR) in low-aerosol-content environments. In terms of statistical characterization, the wind-profile comparison showed good agreement between different lidars. Initially, there was a discrepancy in the SNR and attenuated backscatter coefficient profiles which arose from an incorrectly reported telescope focus setting from one instrument, together with the need to calibrate. After diagnosing the true telescope focus length, calculating a new attenuated backscatter coefficient profile with the new telescope function and taking into account calibration, the resulting attenuated backscatter profiles all showed good agreement with each other. It was thought that harsh Finnish winters could pose problems, but, due to the built-in heating systems, low ambient temperatures had no, or only a minor, impact on the lidar operation – including scanning-head motion. However, accumulation of snow and ice on the lens has been observed, which can lead to the formation of a water/ice layer thus attenuating the signal inconsistently. Thus, care must be taken to ensure continuous snow removal.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Direct effects of soil or its constituents on human health are through its ingestion, inhalation or absorption. The soil contains many infectious organisms that may enter the human body through these pathways, but it also provides organisms on which our earliest antibiotics are based. Indirect effects of soil arise from the quantity and quality of food that humans consume. Trace elements can have both beneficial and toxic effects on humans, especially where the range for optimal intake is narrow. We focus on four trace elements (iodine, iron, selenium and zinc) whose deficiencies have substantial effects on human health. As the world’s population increases issues of food security become more pressing, as does the need to sustain soil fertility and minimize its degradation. Lack of adequate food and food of poor nutritional quality lead to differing degrees of under-nutrition, which in turn causes ill health. Soil and land are finite resources and agricultural land is under severe competition from other uses. Relationships between soil and health are often difficult to extricate because of the many confounding factors present. Nevertheless, recent scientific understanding of soil processes and factors that affect human health are enabling greater insight into the effects of soil on our health. Multidisciplinary research that includes soil science, agronomy, agricultural sustainability, toxicology, epidemiology and the medical sciences will facilitate the discovery of new antibiotics, a greater understanding of how materials added to soil used for food production affect health and deciphering of the complex relationships between soil and human health.