26 resultados para 1091
Resumo:
The nature and scale of pre-Columbian land use and the consequences of the 1492 “Columbian Encounter” (CE) on Amazonia are among the more debated topics in New World archaeology and paleoecology. However, pre-Columbian human impact in Amazonian savannas remains poorly understood. Most paleoecological studies have been conducted in neotropical forest contexts. Of studies done in Amazonian savannas, none has the temporal resolution needed to detect changes induced by either climate or humans before and after A.D. 1492, and only a few closely integrate paleoecological and archaeological data. We report a high-resolution 2,150-y paleoecological record from a French Guianan coastal savanna that forces reconsideration of how pre-Columbian savanna peoples practiced raised-field agriculture and how the CE impacted these societies and environments. Our combined pollen, phytolith, and charcoal analyses reveal unexpectedly low levels of biomass burning associated with pre-A.D. 1492 savanna raised-field agriculture and a sharp increase in fires following the arrival of Europeans. We show that pre-Columbian raised-field farmers limited burning to improve agricultural production, contrasting with extensive use of fire in pre-Columbian tropical forest and Central American savanna environments, as well as in present-day savannas. The charcoal record indicates that extensive fires in the seasonally flooded savannas of French Guiana are a post-Columbian phenomenon, postdating the collapse of indigenous populations. The discovery that pre-Columbian farmers practiced fire-free savanna management calls into question the widely held assumption that pre-Columbian Amazonian farmers pervasively used fire to manage and alter ecosystems and offers fresh perspectives on an emerging alternative approach to savanna land use and conservation that can help reduce carbon emissions.
Resumo:
When human observers are exposed to even slight motion signals followed by brief visual transients—stimuli containing no detectable coherent motion signals—they perceive large and salient illusory jumps. This novel effect, which we call “high phi”, challenges well-entrenched assumptions about the perception of motion, namely the minimal-motion principle and the breakdown of coherent motion perception with steps above an upper limit. Our experiments with transients such as texture randomization or contrast reversal show that the magnitude of the jump depends on spatial frequency and transient duration, but not on the speed of the inducing motion signals, and the direction of the jump depends on the duration of the inducer. Jump magnitude is robust across jump directions and different types of transient. In addition, when a texture is actually displaced by a large step beyond dmax, a breakdown of coherent motion perception is expected, but in the presence of an inducer observers again perceive coherent displacements at or just above dmax. In sum, across a large variety of stimuli, we find that when incoherent motion noise is preceded by a small bias, instead of perceiving little or no motion, as suggested by the minimal-motion principle, observers perceive jumps whose amplitude closely follows their own dmax limits.
Resumo:
The extent to which past climate change has dictated the pattern and timing of the out-of-Africa expansion by anatomically modern humans is currently unclear [Stewart JR, Stringer CB (2012) Science 335:1317–1321]. In particular, the incompleteness of the fossil record makes it difficult to quantify the effect of climate. Here, we take a different approach to this problem; rather than relying on the appearance of fossils or archaeological evidence to determine arrival times in different parts of the world, we use patterns of genetic variation in modern human populations to determine the plausibility of past demographic parameters. We develop a spatially explicit model of the expansion of anatomically modern humans and use climate reconstructions over the past 120 ky based on the Hadley Centre global climate model HadCM3 to quantify the possible effects of climate on human demography. The combinations of demographic parameters compatible with the current genetic makeup of worldwide populations indicate a clear effect of climate on past population densities. Our estimates of this effect, based on population genetics, capture the observed relationship between current climate and population density in modern hunter–gatherers worldwide, providing supporting evidence for the realism of our approach. Furthermore, although we did not use any archaeological and anthropological data to inform the model, the arrival times in different continents predicted by our model are also broadly consistent with the fossil and archaeological records. Our framework provides the most accurate spatiotemporal reconstruction of human demographic history available at present and will allow for a greater integration of genetic and archaeological evidence.
Resumo:
Abstract: Introduction Although eye exercises appear to help heterophoria, convergence insufficiency and intermittent strabismus, true treatment effects can be confounded by placebo, practice and encouragement factors. This study assessed objective changes in vergence and accommodation responses in typical naïve young adults after two weeks of exercises compared to control conditions to assess the extent of treatment effects occur above other factors. Methods 156 asymptomatic young adults were randomly assigned to 6 exercise groups or 2 no-treatment groups. Treatment targeted i) accommodation, ii)vergence, iii) both, iv) convergence>accommodation, v)accommodation>convergence, or vi) a placebo. All were re-tested under identical conditions, except for the second control group who were additionally encouraged during testing. Objective accommodation and vergence were assessed to a range of targets moving in depth containing combinations of blur, disparity and proximity/looming cues. Results Response gain improved more for less naturalistic targets where more improvement was possible. Convergence exercises improved vergence for near across all targets (P=.035). Mean accommodation changed similarly,but non-significantly. No other treatment group differed significantly from the non-encouraged control group, while encouraging effort produced significantly increased vergence (P=.004) and accommodation (P=.005) gains in the other control group. Conclusions True treatment effects were small, only significantly better after vergence exercises to a non-accommodative target, and were rarely related to response they were designed to improve. Exercising accommodation without convergence made no difference to accommodation to cues containing detail. Additional effort improved objective responses the most, so should be controlled carefully in research, and considered when auditing treatment.
Resumo:
Background. Current models of concomitant, intermittent strabismus, heterophoria, convergence and accommodation anomalies are either theoretically complex or incomplete. We propose an alternative and more practical way to conceptualize clinical patterns. Methods. In each of three hypothetical scenarios (normal; high AC/A and low CA/C ratios; low AC/A and high CA/C ratios) there can be a disparity-biased or blur-biased “style”, despite identical ratios. We calculated a disparity bias index (DBI) to reflect these biases. We suggest how clinical patterns fit these scenarios and provide early objective data from small illustrative clinical groups. Results. Normal adults and children showed disparity bias (adult DBI 0.43 (95%CI 0.50-0.36), child DBI 0.20 (95%CI 0.31-0.07) (p=0.001). Accommodative esotropes showed less disparity-bias (DBI 0.03). In the high AC/A and low CA/C scenario, early presbyopes had mean DBI of 0.17 (95%CI 0.28-0.06), compared to DBI of -0.31 in convergence excess esotropes. In the low AC/A and high CA/C scenario near exotropes had mean DBI of 0.27, while we predict that non-strabismic, non-amblyopic hyperopes with good vision without spectacles will show lower DBIs. Disparity bias ranged between 1.25 and -1.67. Conclusions. Establishing disparity or blur bias, together with knowing whether convergence to target demand exceeds accommodation or vice versa explains clinical patterns more effectively than AC/A and CA/C ratios alone. Excessive bias or inflexibility in near-cue use increases risk of clinical problems. We suggest clinicians look carefully at details of accommodation and convergence changes induced by lenses, dissociation and prisms and use these to plan treatment in relation to the model.
Resumo:
MAGIC populations represent one of a new generation of crop genetic mapping resources combining high genetic recombination and diversity. We describe the creation and validation of an eight-parent MAGIC population consisting of 1091 F7 lines of winter-sown wheat (Triticum aestivum L.). Analyses based on genotypes from a 90,000-single nucleotide polymorphism (SNP) array find the population to be well-suited as a platform for fine-mapping quantitative trait loci (QTL) and gene isolation. Patterns of linkage disequilibrium (LD) show the population to be highly recombined; genetic marker diversity among the founders was 74% of that captured in a larger set of 64 wheat varieties, and 54% of SNPs segregating among the 64 lines also segregated among the eight founder lines. In contrast, a commonly used reference bi-parental population had only 54% of the diversity of the 64 varieties with 27% of SNPs segregating. We demonstrate the potential of this MAGIC resource by identifying a highly diagnostic marker for the morphological character "awn presence/absence" and independently validate it in an association-mapping panel. These analyses show this large, diverse, and highly recombined MAGIC population to be a powerful resource for the genetic dissection of target traits in wheat, and it is well-placed to efficiently exploit ongoing advances in phenomics and genomics. Genetic marker and trait data, together with instructions for access to seed, are available at http://www.niab.com/MAGIC/.
Resumo:
Parental behaviors, most notably overcontrol, lack of warmth and expressed anxiety, have been implicated in models of the development and maintenance of anxiety disorders in children and young people. Theories of normative development have proposed that different parental responses are required to support emotional development in childhood and adolescence, yet age has not typically been taken into account in studies of parenting and anxiety disorders. In order to identify whether associations between anxiety disorder status and parenting differ in children and adolescents, we compared observed behaviors of parents of children (7–10 years) and adolescents (13–16 years) with and without anxiety disorders (n=120), while they undertook a series of mildly anxiety-provoking tasks. Parents of adolescents showed significantly lower levels of expressed anxiety, intrusiveness and warm engagement than parents of children. Furthermore, offspring age moderated the association between anxiety disorder status and parenting behaviors. Specifically, parents of adolescents with anxiety disorders showed higher intrusiveness and lower warm engagement than parents of non-anxious adolescents. A similar relationship between these parenting behaviors and anxiety disorder status was not observed among parents of children. The findings suggest that theoretical accounts of the role of parental behaviors in anxiety disorders in children and adolescents should distinguish between these different developmental periods. Further experimental research to establish causality, however, would be required before committing additional resources to targeting parenting factors within treatment.
Resumo:
A new global synthesis and biomization of long (>40 kyr) pollen-data records is presented, and used with simulations from the HadCM3 and FAMOUS climate models to analyse the dynamics of the global terrestrial biosphere and carbon storage over the last glacial–interglacial cycle. Global modelled (BIOME4) biome distributions over time generally agree well with those inferred from pollen data. The two climate models show good agreement in global net primary productivity (NPP). NPP is strongly influenced by atmospheric carbon dioxide (CO2) concentrations through CO2 fertilization. The combined effects of modelled changes in vegetation and (via a simple model) soil carbon result in a global terrestrial carbon storage at the Last Glacial Maximum that is 210–470 Pg C less than in pre-industrial time. Without the contribution from exposed glacial continental shelves the reduction would be larger, 330–960 Pg C. Other intervals of low terrestrial carbon storage include stadial intervals at 108 and 85 ka BP, and between 60 and 65 ka BP during Marine Isotope Stage 4. Terrestrial carbon storage, determined by the balance of global NPP and decomposition, influences the stable carbon isotope composition (δ13C) of seawater because terrestrial organic carbon is depleted in 13C. Using a simple carbon-isotope mass balance equation we find agreement in trends between modelled ocean δ13C based on modelled land carbon storage, and palaeo-archives of ocean δ13C, confirming that terrestrial carbon storage variations may be important drivers of ocean δ13C changes.
Resumo:
Dictyostelium is a popular experimental organism, in particular for studies of actin dynamics, cell motility and chemotaxis. We find that the motility of axenic cells is unexpectedly different from other strains during growth. In particular, vegetative AX3 cells do not show detectable localisation of SCAR and its regulatory complex to actin-rich protrusions such as filopodia and pseudopodia. Similarly, a range of different mutations, in particular knockouts of members of the SCAR complex and Ras proteins, cause different phenotypes during vegetative growth in different parental strains. Development reverses this unusual behaviour; aggregation-competent AX3 cells localise SCAR in the same way as cells of other strains and species. Studies on cell motility using vegetative cells should therefore be interpreted with caution.
Resumo:
Many Australian plant species have specific root adaptations for growth in phosphorus-impoverished soils, and are often sensitive to high external P concentrations. The growth responses of native Australian legumes in agricultural soils with elevated P availability in the surface horizons are unknown. The aim of these experiments was to test the hypothesis that increased P concentration in surface soil would reduce root proliferation at depth in native legumes. The effect of P placement on root distribution was assessed for two Australian legumes, Kennedia prorepens F. Muell. and Lotus australis Andrews, and the exotic Medicago sativa L. Three treatments were established in a low-P loam soil: amendment of 0.15 g mono-calcium phosphate in either (i) the top 50 mm (120 µg P g–1) or (ii) the top 500 mm (12 µg P g–1) of soil, and an unamended control. In the unamended soil M. sativa was shallow rooted, with 58% of the root length of in the top 50 mm. K. prorepens and L. australis had a more even distribution down the pot length, with only 4 and 22% of their roots in the 0–50 mm pot section, respectively. When exposed to amendment of P in the top 50 mm, root length in the top 50 mm increased 4-fold for K. prorepens and 10-fold for M. sativa, although the pattern of root distribution did not change for M. sativa. L. australis was relatively unresponsive to P additions and had an even distribution of roots down the pot. Shoot P concentrations differed according to species but not treatment (K. prorepens 2.1 mg g–1, L. australis 2.4 mg g–1, M. sativa 3.2 mg g–1). Total shoot P content was higher for K. prorepens than for the other species in all treatments. In a second experiment, mono-ester phosphatases were analysed from 1-mm slices of soil collected directly adjacent to the rhizosphere. All species exuded phosphatases into the rhizosphere, but addition of P to soil reduced phosphatase activity only for K. prorepens. Overall, high P concentration in the surface soil altered root distribution, but did not reduce root proliferation at depth. Furthermore, the Australian herbaceous perennial legumes had root distributions that enhanced P acquisition from low-P soils.
Resumo:
In this invited commentary, the authors discuss whether the use of minus lenses to aid control of intermittent exotropia has an alternative method of action. Conventional theory suggests that the lenses induce accommodation and therefore accommodative convergence to reduce the angle of deviation. We discuss evidence which suggests that convergence is induced to control the primary deviation and that the minus lenses allow this control by correcting refractive blur caused by additional vergence accommodation.