19 resultados para 1,4-addition
Resumo:
A series of experiments was completed to investigate the impact of addition of enzymes at ensiling on in vitro rumen degradation of maize silage. Two commercial products, Depot 40 (D, Biocatalysts Ltd., Pontypridd, UK) and Liquicell 2500 (L, Specialty Enzymes and Biochemicals, Fresno, CA, USA), were used. In experiment 1, the pH optima over a pH range 4.0-6.8 and the stability of D and L under changing pH (4.0, 5.6, 6.8) and temperature (15 and 39 degreesC) conditions were determined. In experiment 2, D and L were applied at three levels to whole crop maize at ensiling, using triplicate 0.5 kg capacity laboratory minisilos. A completely randomized design with a factorial arrangement of treatments was used. One set of treatments was stored at room temperature, whereas another set was stored at 40 degreesC during the first 3 weeks of fermentation, and then stored at room temperature. Silages were opened after 120 days. Results from experiment I indicated that the xylanase activity of both products showed an optimal pH of about 5.6, but the response differed according to the enzyme, whereas the endoglucanase activity was inversely related to pH. Both products retained at least 70% of their xylanase activity after 48 h incubation at 15 or 39 degreesC. In experiment 2, enzymes reduced (P < 0.05) silage pH, regardless of storage temperature and enzyme level. Depol 40 reduced (P < 0.05) the starch contents of the silages, due to its high alpha-amylase activity. This effect was more noticeable in the silages stored at room temperature. Addition of L reduced (P < 0.05) neutral detergent fiber (NDF) and acid detergent fiber (ADF) contents. In vitro rumen degradation, assessed using the Reading Pressure Technique (RPT), showed that L increased (P < 0.05) the initial 6 h gas production (GP) and organic matter degradability (OMD), but did not affect (P > 0.05) the final extent of OMD, indicating that this preparation acted on the rumen degradable material. In contrast, silages treated with D had reduced (P < 0.05) rates of gas production and OMD. These enzymes, regardless of ensiling temperature, can be effective in improving the nutritive quality of maize silage when applied at ensiling. However, the biochemical properties of enzymes (i.e., enzymic activities, optimum pH) may have a crucial role in dictating the nature of the responses. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
The night-time atmospheric chemistry of the biogenic volatile organic compounds (Z)-hex-4-en-1-ol, (Z)-hex-3-en-1-ol ('leaf alcohol'), (E)-hex-3-en-1-ol, (Z)-hex-2-en-1-ol and (E)-hex-2-en-1-ol, has been studied at room temperature. Rate coefficients for reactions of the nitrate radical (NO3) with these stress-induced plant emissions were measured using the discharge-flow technique. We employed off-axis continuous-wave cavity-enhanced absorption spectroscopy (CEAS) for the detection of NO3, which enabled us to work in excess of the hexenol compounds over NO3. The rate coefficients determined were (2.93 +/- 0.58) x 10(-13) cm(3) molecule(-1) s(-1), (2.67 +/- 0.42) x 10(-13) cm(3) molecule(-1) s(-1), (4.43 +/- 0.91) x 10(-13) cm(3) molecule(-1) s(-1), (1.56 +/- 0.24) x 10(-13) cm(3) molecule(-1) s(-1), and (1.30 +/- 0.24) x 10(-13) cm(3) molecule(-1) s(-1) for (Z)-hex-4-en-1-ol, (Z)-hex-3en-1-ol, (E)-hex-3-en-1-ol, (Z)-hex-2-en-1-ol and (E)-hex-2-en-1-ol. The rate coefficient for the reaction of NO3 with (Z)-hex-3-en-1-ol agrees with the single published determination of the rate coefficient using a relative method. The other rate coefficients have not been measured before and are compared to estimated values. Relative-rate studies were also performed, but required modification of the standard technique because N2O5 (used as the source of NO3) itself reacts with the hexenols. We used varying excesses of NO2 to determine simultaneously rate coefficients for reactions of NO3 and N2O5 with (E)-hex-3-en-1-ol of (5.2 +/- 1.8) x 10(-13) cm(3) molecule(-1) s(-1) and (3.1 +/- 2.3) x 10(-18) cm(3) molecule(-1) s(-1). Our new determinations suggest atmospheric lifetimes with respect to NO3-initiated oxidation of roughly 1-4 h for the hexenols, comparable with lifetimes estimated for the atmospheric degradation by OH and shorter lifetimes than for attack by O-3. Recent measurements of [N2O5] suggest that the gas-phase reactions of N2O5 with unsaturated alcohols will not be of importance under usual atmospheric conditions, but they certainly can be in laboratory systems when determining rate coefficients.
Resumo:
The quadridentate N-heterocyclic ligand 6-(5,5,8,8-tetramethyl-5,6,7,8-tetrahydro-1,2,4-benzotriazin- 3-yl)-2,2′ : 6′,2′′-terpyridine (CyMe4-hemi-BTBP) has been synthesized and its interactions with Am(III),U(VI), Ln(III) and some transition metal cations have been evaluated by X-ray crystallographic analysis, Am(III)/Eu(III) solvent extraction experiments, UVabsorption spectrophotometry, NMR studies and ESI-MS. Structures of 1 : 1 complexes with Eu(III), Ce(III) and the linear uranyl (UO2 2+) ion were obtained by X-ray crystallographic analysis, and they showed similar coordination behavior to related BTBP complexes. In methanol, the stability constants of the Ln(III) complexes are slightly lower than those of the analogous quadridentate bis-triazine BTBP ligands, while the stability constant for the Yb(III)complex is higher. 1H NMR titrations and ESI-MS with lanthanide nitrates showed that the ligand forms only 1 : 1 complexes with Eu(III), Ce(III) and Yb(III), while both 1 : 1 and 1 : 2 complexes were formed with La(III) and Y(III) in acetonitrile. A mixture of isomeric chiral 2 : 2 helical complexes was formed with Cu(I), with a slight preference (1.4 : 1) for a single directional isomer. In contrast, a 1 : 1 complex was observed with the larger Ag(I) ion. The ligand was unable to extract Am(III) or Eu(III) from nitric acid solutions into 1-octanol, except in the presence of a synergist at low acidity. The results show that the presence of two outer 1,2,4-triazine rings is required for the efficient extraction and separation of An(III)from Ln(III) by quadridentate N-donor ligands.
Resumo:
The translocation of protein kinase C (PKC) isoforms PKC-alpha, PKC-delta, PKC-epsilon, and PKC-zeta from soluble to particulate fractions was studied in ventricular cardiomyocytes cultured from neonatal rats. Endothelin-1 (ET-1) caused a rapid ETA receptor-mediated translocation of PKC-delta and PKC-epsilon (complete in 0.5-1 min). By 3-5 min, both isoforms were returning to the soluble fraction, but a greater proportion of PKC-epsilon remained associated with the particulate fraction. The EC50 of translocation for PKC-delta was 11-15 nM ET-1 whereas that for PKC-epsilon was 1.4-1.7 nM. Phenylephrine caused a rapid translocation of PKC-epsilon (EC50 = 0.9 microM) but the proportion lost from the soluble fraction was less than with ET-1. Translocation of PKC-delta was barely detectable with phenylephrine. Neither agonist caused any consistent translocation of PKC-alpha or PKC-zeta. Activation of p42 and p44 mitogen-activated protein kinase (MAPK) by ET-1 or phenylephrine followed more slowly (complete in 3-5 min). Phosphorylation of p42-MAPK occurred simultaneously with its activation. The proportion of the total p42-MAPK pool phosphorylated in response to ET-1 (50%) was greater than with phenylephrine (20%). In addition to activation of MAPK, an unidentified p85 protein kinase was activated by ET-1 in the soluble fraction whereas an unidentified p58 protein kinase was activated in the particulate fraction.