31 resultados para 1,10-Phenanthroline
Resumo:
In the title family, the ONO donor ligands are the acetylhydrazones of salicylaidehyde (H2L1) and 2-hydroxyacetophenone (H2L2) (general abbreviation, H2L). The reaction of bis(acetylacetonato)oxovanadium(IV) with a mixture of tridentate H2L and a bidentate NN donor [e.g., 2,2'-bipyridine(bpy) or 1,10-phenanthroline(phen), hereafter B] ligands in equimolar ratio afforded the tetravalent complexes of the type [(VO)-O-IV(L)(B)]; complexes (1)-(4) whereas, if B is replaced by 8-hydroxyquinoline(Hhq) (which is a bidentate ON donor ligand), the above reaction mixture yielded the pentavalent complexes of the type [(VO)-O-V(L)(hq)]; complexes (5) and (6). Aerial oxygen is most likely the oxidant (for the oxidation of V-IV -> V-V) in the synthesis of pentavalent complexes (5) and (6). [(VO)-O-IV(L)(B)] complexes are one electron paramagnetic and display axial EPR spectra, while the [(VO)-O-V(L)(hq)] complexes are diamagnetic. The X-ray structure of [(VO)-O-V(L-2)(hq)] (6) indicates that H2L2 ligand is bonded with the vanadium meridionally in a tridentate dinegative fashion through its phenolic-O, enolic-O and imine-N atoms. The general bond length order is: oxo < phenolato < enolato. The V-O (enolato) bond is longer than V-O (phenolato) bond by similar to 0.07 angstrom and is identical with V-O (carboxylate) bond. H-1 NMR spectrum of (6) in CDCl3 solution indicates that the binding nature in the solid state is also retained in solution. Complexes (1)(4) display two ligand-field transitions in the visible region near 820 and 480 nm in DMF solution and exhibit irreversible oxidation peak near +0.60 V versus SCE in DMSO solution, while complexes (5) and (6) exhibit only LMCT band near 535 nm and display quasi-reversible one electron reduction peak near -0.10 V versus SCE in CH2Cl2 solution. The VO3+-VO2+ E-1/2 values shift considerably to more negative values when neutral NN donor is replaced by anionic ON donor species and it also provides better VO3+ binding via phenolato oxygen. For a given bidentate ligand, E-1/2 increases in the order: (L-2)(2-) < (L-1)(2-). (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
Three new metal-organic polymeric complexes, [Fe(N-3)(2)(bPP)(2)] (1), [Fe(N-3)(2)(bpe)] (2), and [Fe(N-3)(2)(phen)] (3) [bpp = (1,3-bis(4-pyridyl)-propane), bpe = (1,2-bis(4-pyridyl)-ethane), phen = 1,10-phenanthroline], have been synthesized and characterized by single-crystal X-ray diffraction studies and low-temperature magnetic measurements in the range 300-2 K. Complexes 1 and 2 crystallize in the monoclinic system, space group C2/c, with the following cell parameters: a = 19.355(4) Angstrom, b = 7.076(2) Angstrom, c = 22.549(4) Angstrom, beta = 119.50(3)degrees, Z = 4, and a = 10.007(14) Angstrom, b = 13.789(18) Angstrom, c = 10.377(14) Angstrom, beta = 103.50(1)degrees, Z = 4, respectively. Complex 3 crystallizes in the triclinic system, space group P (1) over bar, with a = 7.155(12) Angstrom, b = 10.066(14) Angstrom, c = 10.508(14) Angstrom, alpha = 109.57(1)degrees, beta = 104.57(1)degrees, gamma = 105.10(1)degrees, and Z = 2. All coordination polymers exhibit octahedral Fe(II) nodes. The structural determination of 1 reveals a parallel interpenetrated structure of 2D layers of (4,4) topology, formed by Fe(II) nodes linked through bpp ligands, while mono-coordinated azide anions are pendant from the corrugated sheet. Complex 2 has a 2D arrangement constructed through 1D double end-to-end azide bridged iron(11) chains interconnected through bpe ligands. Complex 3 shows a polymeric arrangement where the metal ions are interlinked through pairs of end-on and end-to-end azide ligands exhibiting a zigzag arrangement of metals (Fe-Fe-Fe angle of 111.18degrees) and an intermetallic separation of 3.347 Angstrom (through the EO azide) and of 5.229 Angstrom (EE azide). Variable-temperature magnetic susceptibility data suggest that there is no magnetic interaction between the metal centers in 1, whereas in 2 there is an antiferromagnetic interaction through the end-to-end azide bridge. Complex 3 shows ferro- as well as anti-ferromagnetic interactions between the metal centers generated through the alternating end-on and end-to-end azide bridges. Complex I has been modeled using the D parameter (considering distorted octahedral Fe(II) geometry and with any possible J value equal to zero) and complex 2 has been modeled as a one-dimensional system with classical and/or quantum spin where we have used two possible full diagonalization processes: without and with the D parameter, considering the important distortions of the Fe(II) ions. For complex 3, the alternating coupling model impedes a mathematical solution for the modeling as classical spins. With quantum spin, the modeling has been made as in 2.
Resumo:
The hydrothermal reactions of Ni(NO3)(2).6H(2)O, disodium fumarate (fum) and 1,2-bis(4-pyridyl)ethane (bpe)/1,3-bis(4-pyridyl) propane (bpp) in aqueous-methanol medium yield one 3-D and one 2-D metal-organic hybrid material, [Ni(fum)(bpe)] (1) and [Ni(fum)(bpp)(H2O)] (2), respectively. Complex 1 possesses a novel unprecedented structure, the first example of an "unusual mode" of a five-fold distorted interpenetrated network with metal-ligand linkages where the four six-membered windows in each adamantane-type cage are different. The structural characterization of complex 2 evidences a buckled sheet where nickel ions are in a distorted octahedral geometry, with two carboxylic groups, one acting as a bis-chelate, the other as a bis-monodentate ligand. The metal ion completes the coordination sphere through one water molecule and two bpp nitrogens in cis position. Variable-temperature magnetic measurements of complexes 1 and 2 reveal the existence of very weak antiferromagnetic intramolecular interactions and/or the presence of single-ion zero field splitting (D) of isolated Ni-II ions in both the compounds. Experimentally, both the J parameters are close, comparable and very small. Considering zero-field splitting of Ni-II, the calculated D values are in agreement with values reported in the literature for Ni-II ions. Complex 3, [{Co(phen)}(2)(fum)(2)] (phen=1,10-phenanthroline) is obtained by diffusing methanolic solution of 1,10-phenanthroline on an aqueous layer of disodium fumarate and Co(NO3)(2).6H(2)O. It consists of dimeric Co-II(phen) units, doubly bridged by carboxylate groups in a distorted syn-syn fashion. These fumarate anions act as bis-chelates to form corrugated sheets. The 2D layer has a (4,4) topology, with the nodes represented by the centres of the dimers. The magnetic data were fitted ignoring the very weak coupling through the fumarate pathway and using a dimer model.
Resumo:
Reaction of 2,2'-dithiodipyridine (DTDP) with cis-Ru(bpy)(2)Cl-2 (bpy = 2,2'-bipyridine) and cis-Ru(phen)(2)Cl-2 (phen = 1,10-phenanthroline) respectively yields the dicationic species [Ru(bpy) (2)(DTDP)](2+) and [Ru(phen)(2) (DTDP)](2+) in which the S-S bond of DTDP remains intact. The S-S bond undergoes a reductive cleavage when DTDP is reacted with cis-Ru(bisox)(2)Cl-2 (bisox = 4,4,4',4'-tetramethyl-2,2'-bisoxazoline) under identical conditions to generate the monocationic species [Ru(bisox)(2)(2-thiolatopyridine)]. The intramolecular electron transfer between the metal and the S-S bond is found to be subtly controlled by the crystal field strength of the ancillary bidentate N-donor ligands.
Resumo:
The mammalian bradykinin-degrading enzyme aminopeptidase P (AP-P; E. C. 3.4.11.9) is a metal-dependent enzyme and is a member of the peptidase clan MG. AP-P exists as membrane-bound and cytosolic forms, which represent distinct gene products. A partially truncated clone encoding the cytosolic form was obtained from a human pancreatic cDNA library and the 5' region containing the initiating Met was obtained by 5' rapid accumulation of cDNA ends (RACE). The open reading frame encodes a protein of 623 amino acids with a calculated molecular mass of 69,886 Da. The full-length cDNA with a C-terminal hexahistidine tag was expressed in Escherichia coli and COS-1 cells and migrated on SDS-PAGE with a molecular mass of 71 kDa. The expressed cytosolic AP-P hydrolyzed the X-Pro bond of bradykinin and substance P but did not hydrolyze Gly-Pro-hydroxyPro. Hydrolysis of bradykinin was inhibited by 1,10-phenanthroline and by the specific inhibitor of the membrane-bound form of mammalian AP-P, apstatin. Inductively coupled plasma atomic emission spectroscopy of AP-P expressed in E. coli revealed the presence of 1 mol of manganese/mol of protein and insignificant amounts of cobalt, iron, and zinc. The enzymatic activity of AP-P was promoted in the presence of Mn(II), and this activation was increased further by the addition of glutathione. The only other metal ion to cause slight activation of the enzyme was Co(II), with Ca(II), Cu(II), Mg(II), Ni(II), and Zn(II) all being inhibitory. Removal of the metal ion from the protein was achieved by treatment with 1,10-phenanthroline. The metal-free enzyme was reactivated by the addition of Mn(II) and, partially, by Fe(II). Neither Co(II) nor Zn(II) reactivated the metal-free enzyme. On the basis of these data we propose that human cytosolic AP-P is a single metal ion-dependent enzyme and that manganese is most likely the metal ion used in vivo.
Resumo:
Reaction of 5,6-dihydro-5,6-epoxy-1,10-phenanthroline (L) with Ni(ClO4)(2)center dot 6H(2)O in methanol in 3:1 M proportion at room temperature yields [NiL3](ClO4)(2)center dot 2H(2)O. The X-ray crystal structure of the cation Nil(3)(2+) has been determined. Aminolysis of the three epoxide rings in NiL32+ by 4-substituted anilines in boiling water without any Lewis acid catalyst gives a family of Ni(II) complexes with octahedral NiL62+ core. In these complexes, crystal field splitting 10Dq varies from 11601 to 15798 cm(-1) in acetonitrile. The variation in 10Dq is found to be satisfactorily linear (r(2) = 0.951) with the Hammett sigma(R) parameter of the substituent on the anilino fragment. 10Dq increases with the increase in the electron donation ability of the substituent.
Resumo:
The synthesis and structural characterization of a novel oxoperoxovanadium(v) complex [VO(O-2)(PAH)-(phen)] containing the ligands 2-phenylacetohydroxamic acid (PAHH) and 1,10-phenanthroline (phen) has been accomplished. The oxoperoxovanadium(v) complex was found to mimic both vanadate-dependent haloperoxidase (VHPO) activity as well as nuclease activity through effective interaction with DNA. The complex is the first example of a structurally characterized stable oxoperoxovanadium(v) complex with a coordinated bi-dentate hydroximate moiety (-CONHO-) from 2-phenylacetohydroximate (PAH). The oxoperoxovanadium(v) complex has been used as catalyst for the peroxidative bromination reaction of some unsaturated alcohols (e.g. 4-pentene-1-ol, 1-octene-3-ol and 9-decene-1-ol) in the presence of H2O2 and KBr. The catalytic products have been characterized by GC-MS analysis and spectrophotometric methods. The DNA binding of this complex has been established with CT DNA whereas the DNA cleavage was demonstrated with plasmid DNA. The interactions of the complex with DNA have been monitored by electronic absorption and fluorescence emission spectroscopy. Viscometric measurements suggest that the compound is a DNA intercalator. The nuclease activity of this complex was confirmed by gel electrophoresis studies.
Resumo:
The epoxide ring in 5,6-dihydro-5,6-epoxy-1,10-phenanthroline (L) opens up in its reaction with 4-methylaniline and 4-methoxyaniline in water in equimolar proportion at room temperature without any Lewis acid catalyst to give a monohydrate of 6-(4-methyl-phenylamino)-5,6-dihydro-1,10-phenanthrolin-5-ol (L′·H2O) and 6-(4-methoxyphenyl-amino)-5,6-dihydro-1,10-phenanthrolin-5-ol (L″) respectively. Reaction time decreases from 72 to 14 h in boiling water. But the yields become less. Reaction of L with Zn(ClO4)2·6H2O in methanol in 3:1 molar ratio at room temperature affords white [ZnL3](ClO4)2·H2O. The X-ray crystal structure of the acetonitrile solvate [ZnL3](ClO4)2·MeCN has been determined which shows that the metal has a distorted octahedral N6 coordination sphere. [ZnL3](ClO4)2·2H2O reacts with 4-methylaniline and 4-methoxyaniline in boiling water in 1:3 molar proportion in the absence of any Lewis acid catalyst to produce [ZnL′3](ClO4)2·4H2O and [ZnL″3](ClO4)2·H2O, respectively in 1–4 h time in somewhat low yield. In the 1H NMR spectra of [ZnL′3](ClO4)2·4H2O and [ZnL″3](ClO4)2·H2O, only one sharp methyl signal is observed implicating that only one diastereomer out of the 23 possibilities is formed. The same diastereomers are obtained when L′·H2O and L″ are reacted directly with Zn(ClO4)2·6H2O in tetrahydrofuran at room temperature in very good yields. Reactions of L′·H2O and L″ with Ru(phen)2Cl2·2H2O (phen = 1,10-phenanthroline) in equimolar proportion in methanol–water mixture under refluxing condition lead to the isolation of two diastereomers of [Ru(phen)2L′](ClO4)2·2H2O and [Ru(phen)2L″](ClO4)2·2H2O.
Resumo:
Lanthanide(III) complexes with N-donor ex-tractants, which exhibit the potential for the separation of minor actinides from lanthanides in the management of spent nuclear fuel, have been directly synthesized and characterized in both solution and solid states. Crystal structures of the Pr3+, Eu3+, Tb3+, and Yb3+ complexes of 6,6′-bis(5,5,8,8-tetramethyl-5,6,7,8-tetrahydro-1,2,4-benzotriazin3-yl)-1,10-phenanthroline(CyMe4-BTPhen) and the Pr3+, Eu3+, and Tb3+ complexes of 2,9-bis(5,5,8,8-tetramethyl-5,6,7,8-tetrahydro-1,2,4-benzotria-zin-3-yl)-2,2′-bypyridine (CyMe4-BTBP) were obtained. The majority of these structures displayed coordination of two ofthe tetra-N-donor ligands to each Ln3+ ion, even when in some cases the complexations were performed with equimolar amounts of lanthanide and N-donor ligand. The structures showed that generally the lighter lanthanides had their coordination spheres completed by a bidentate nitrate ion, giving a 2+ charged complex cation, whereas the structures of the heavier lanthanides displayed tricationic complex species with a single water molecule completing their coordination environments. Electronic absorption spectroscopic titrations showed formation of the 1:2 Ln3+/LN4‑donor species (Ln = Pr3+, Eu3+, Tb3+) in methanol when the N-donor ligand was in excess. When the Ln3+ ion was in excess, evidence for formation of a 1:1 Ln3+/LN4‑donor complex species was observed. Luminescent lifetime studies of mixtures of Eu3+ with excess CyMe4-BTBP and CyMe4-BTPhen in methanol indicated that the nitrate-coordinated species is dominant in solution. X-ray absorption spectra of Eu3+ and Tb3+ species, formed by extraction from an acidic aqueous phase into an organic solution consisting of excess N-donor extractant in pure cyclohexanone or 30% tri-n-butyl phosphate (TBP) in cyclohexanone, were obtained. The presence of TBP in the organic phase did not alter lanthanide speciation. Extended X-ray absorption fine structure data from these spectra were fitted using chemical models established by crystallography and solution spectroscopy and showed the dominant lanthanide species in the bulk organic phase was a 1:2 Ln3+/LN‑donor species.
Resumo:
Two members of the tetradentate N-donor ligand families 6,6′-bis(1,2,4-triazin-3-yl)-2,2′-bipyridine (BTBP) and 2,9-bis(1,2,4-triazin-3-yl)-1,10-phenanthroline (BTPhen) currently being developed for separating actinides from lanthanides have been studied. It has been confirmed that CyMe4-BTPhen 2 has faster complexation kinetics than CyMe4-BTBP 1. The values for the HOMO−LUMO gap of 2 are comparable with those of CyMe4-BTBP 1 for which the HOMO−LUMO gap was previously calculated to be 2.13 eV. The displacement of BTBP from its bis-lanthanum(III) complex by BTPhen was observed by NMR, and constitutes the only direct evidence for the greater thermodynamic stability of the complexes of BTPhen. NMR competition experiments suggest the following order of bis-complex stability: 1:2 bis-BTPhen complex ≥ heteroleptic BTBP/BTPhen 1:2 bis-complex > 1:2 bis-BTBP complex. Kinetics studies on some bis-triazine N-donor ligands using the stopped-flow technique showed a clear relationship between the rates of metal ion complexation and the degree to which the ligand is preorganized for metal binding. The BTBPs must overcome a significant (ca. 12 kcal mol−1) energy barrier to rotation about the central biaryl C−C axis in order to achieve the cis−cis conformation that is required to form a complex, whereas the cis−cis conformation is fixed in the BTPhens. Complexation thermodynamics and kinetics studies in acetonitrile show subtle differences between the thermodynamic stabilities of the complexes formed, with similar stability constants being found for both ligands. The first crystal structure of a 1:1 complex of CyMe4-BTPhen 2 with Y(NO3)3 is also reported. The metal ion is 10- coordinate being bonded to the tetradentate ligand 2 and three bidentate nitrate ions. The tetradentate ligand is nearly planar with angles between consecutive rings of 16.4(2)°, 6.4(2)°, 9.7(2)°, respectively.
Resumo:
Effects of bromine substitution at the 5 and 5,6-positions of the 1,10-phenanthroline nucleus of BTPhen ligand on their extraction properties for Ln(III) andAn(III) cations have been studied. Compared to C5-BTPhen, electronic modulation in BrC5-BTPhen and Br2C5-BTPhen enabled these ligands to be fine-tuned in order to enhance the separation selectivity of Am(III) from Eu(III)
Resumo:
A large number of urban surface energy balance models now exist with different assumptions about the important features of the surface and exchange processes that need to be incorporated. To date, no com- parison of these models has been conducted; in contrast, models for natural surfaces have been compared extensively as part of the Project for Intercomparison of Land-surface Parameterization Schemes. Here, the methods and first results from an extensive international comparison of 33 models are presented. The aim of the comparison overall is to understand the complexity required to model energy and water exchanges in urban areas. The degree of complexity included in the models is outlined and impacts on model performance are discussed. During the comparison there have been significant developments in the models with resulting improvements in performance (root-mean-square error falling by up to two-thirds). Evaluation is based on a dataset containing net all-wave radiation, sensible heat, and latent heat flux observations for an industrial area in Vancouver, British Columbia, Canada. The aim of the comparison is twofold: to identify those modeling ap- proaches that minimize the errors in the simulated fluxes of the urban energy balance and to determine the degree of model complexity required for accurate simulations. There is evidence that some classes of models perform better for individual fluxes but no model performs best or worst for all fluxes. In general, the simpler models perform as well as the more complex models based on all statistical measures. Generally the schemes have best overall capability to model net all-wave radiation and least capability to model latent heat flux.
Resumo:
An aqueous solution of the α-ω-dicarboxylic acid octanedioic acid (odaH2) reacts with [Cu2(μ-O2CCH3)4(H2O)2] in the presence of an excess of pyridine (py) to give the crystalline copper(II) complex {Cu2(η1η1μ2-oda)2(py)4(H2O)2}n (1). structure of 1, as determined by X-ray crystallography, consists of polymeric chains in which bridging oda2− anions link two crystallographically identical copper atoms. The copper atoms are also ligated by two transoidal pyridine nitrogens and an oxygen atom from an apical water molecule, giving the metals an overall N2O3 square-pyramidal geometry. If the blue solid 1 is gently heated, or if it is left to stand in its mother liquor for prolonged periods, it loses one molecule of pyridine and half a molecule of water and the green complex {Cu (oda)(py)(H2O)0.5}n (2) is formed. Spectroscopic and magnetic data for both complexes are given, together with the electrochemical and thermogravimetric measurements for 1.
Resumo:
[Cu2(μO2CCH3)4(H2O)2], [CuCO3·Cu(OH)2], [CoSO4·7H2O], [Co((+)-tartrate)], and [FeSO4·7H2O] react with excess racemic (±)- 1,1′-binaphthyl-2,2′-diyl hydrogen phosphate {(±)-PhosH} to give mononuclear CuII, CoII and FeII products. The cobalt product, [Co(CH3OH)4(H2O)2]((+)-Phos)((−)-Phos) ·2CH3OH·H2O (7), has been identified by X-ray diffraction. The high-spin, octahedral CoII atom is ligated by four equatorial methanol molecules and two axial water molecules. A (+)- and a (−)-Phos− ion are associated with each molecule of the complex but are not coordinated to the metal centre. For the other CoII, CuII and FeII samples of similar formulation to (7) it is also thought that the Phos− ions are not bonded directly to the metal. When some of the CuII and CoII samples are heated under high vacuum there is evidence that the Phos− ions are coordinated directly to the metals in the products.
Resumo:
The stannylene [SnR2] (R = CH(SiMe3)2) reacts in different ways with the three dodecacarbonyls of the iron triad: [Fe3(CO)12] gives [Fe2(CO)8(μ-SnR2)], [Ru3(CO)12] gives the planar pentametallic cluster [Ru3(CO)10(μ-SnR2)2], for which a full structural analysis is reported, while [Os3(CO)12] fails to react. Different products are also obtained from three nitrile derivatives: [Fe3-(CO)11(MeCN)] gives [Fe2(CO)6(μ-SnR2)2], which has a structure significantly different from that of known Fe2Sn2 clusters, [Ru3(CO)10(MeCN)2] gives the pentametallic cluster described above, while [Os3(CO)10(MeCN)2] gives the isostructural osmium analogue, which shows the unusual feature of a CO group bridging two osmium atoms.