49 resultados para 1,1`-BIS(DIPHENYLPHOSPHINO)FERROCENE DPPF
Resumo:
The cyclocondensation reaction between rigid, electron-rich aromatic diamines and 1,1′-bis(2,4-dinitrophenyl)-4,4′-bipyridinium (Zincke) salts has been harnessed to produce a series of conjugated oligomers containing up to twelve aromatic/heterocyclic residues. These oligomers exhibit discrete, multiple redox processes accompanied by dramatic changes in electronic absorption spectra.
Resumo:
2-[Methyl(2-methylphenyl)amino]ethanol undergoes an ortho-alkyllithiation reaction with n-butyllithium to lead to a new mixed benzyllithium−lithium alkoxide. This organolithium species reacts with PPh2Cl, with selective P−C bond formation, to afford the ligand 2-[methyl(2-((diphenylphosphino)methyl)phenyl)amino]ethanol L1. The coordination of the ligand L1 to copper(I) leads to the complex [Cu(L1)2](BF4), whose structure has been determined by an X-ray diffraction study. In the solid state, one of the ligands acts as a monodentate phosphine while the other adopts a tridentate P,N,O coordination mode. A variable-temperature 31P NMR study demonstrated the existence of an equilibrium between the two modes in solution, with a coalescence temperature of ca. 0 °C, indicating a double-hemilabile behavior for the nitrogen and the oxygen functions. L1 reacts with [Pd(Me)(Cl)(COD)] to give a dinuclear complex in which the ligand appears to behave as a bridging anionic P,O ligand. Such a complex could serve as a model for a key intermediate in the proposed mechanism for the homogeneous catalysis of the methoxycarbonylation of propyne by certain palladium(II) complexes containing P,N ligands. L1 can undergo a second ortho-alkylmetalation reaction with n-butyllithium which, after addition of PPh2Cl, provides the new ligand 2-{methyl[2-(bis(diphenylphosphino)methyl)phenyl]amino}ethanol (L2) in high yield.
Resumo:
The compound bis[1,1'-N,N'-(2-picolyl) aminomethyl] ferrocene, L-1, was synthesized. The protonation constants of this ligand and the stability constants of its complexes with Ni2+, Cu2+, Zn2+, Cd2+ and Pb2+ were determined in aqueous solution by potentiometric methods at 25degreesC and at ionic strength 0.10 mol dm(-3) in KNO3. The compound L-1 forms only 1:1 (M:L) complexes with Pb2+ and Cd2+ while with Ni2+ and Cu2+ species of 2:1 ratio were also found. The complexing behaviour of L-1 is regulated by the constraint imposed by the ferrocene in its backbone, leading to lower values of stability constants for complexes of the divalent first row transition metals when compared with related ligands. However, the differences in stability are smaller for the larger metal ions. The structure of the copper complex with L-1 was determined by single-crystal X-ray diffraction and shows that a species of 2:2 ratio is formed. The two copper centres display distorted octahedral geometries and are linked through the two L1 bridges at a long distance of 8.781(10) Angstrom. The electrochemical behaviour of L-1 was studied in the presence of Ni2+, Cu2+, Zn2+, Cd2+ and Pb2+, showing that upon complexation the ferrocene-ferrocenium half-wave potential shifts anodically in relation to that of the free ligand. The maximum electrochemical shift (DeltaE(1/2)) of 268 mV was found in the presence of Pb2+, followed by Cu2+ (218 mV), Ni2+ (152 mV), Zn2+ (111 mV) and Cd2+ (110 mV). Moreover, L-1 is able to electrochemically and selectively sense Cu2+ in the presence of a large excess of the other transition metal cations studied.
Resumo:
The AB, monomer, 3,5-bis(3-hydroxylprop-1-ynyl)benzoic acid 1, has been synthesized using a Sonogashira cross-coupling with a palladium catalyst system developed for use with deactivated aryl halides. Numerous condensation methods have then been assessed in the homopolymerization of the acid-diol monomer 1 to afford hyperbranched polyesters. However, as a result of the thermal instability of the monomer, direct thermal polymerizations could not be employed. Alternative approaches using carbodiimide-coupling reagents enabled the production of soluble polyesters possessing molecular weights and degrees of branching ranging from 2500 to 11,000 and 0.22 to 0.33, respectively. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
The title compound, [Cu(C4H8N3O2)(2)]center dot 2C(5)H(9)NO, consists of a neutral copper complex, in which the Cu II centre coordinates to two bis(methoxycarbimido) aminate ligands, solvated by two molecules of 1-methylpyrrolidin-2-one. The complex is planar and centrosymmetric, with the Cu II centre occupying a crystallographic inversion centre and adopting approximately square-planar geometry. N-H center dot center dot center dot O hydrogen-bonding interactions exist between the amine NH groups of the ligands and the O atoms of the 1-methylpyrrolidin-2-one molecules. The associated units pack to form sheets.
Resumo:
it has been established that triazinyl bipyridines (hemi-BTPs) and bis-triazinyl pyridines (BTPs), ligands which are currently being investigated as possible ligands for the separation of actinides from lanthanides in nuclear waste, are able to form homoleptic complexes with first row transition metals such as cobalt(IT), copper(II), iron(II), manganese(II), nickel(II) and zinc(II). The metal complexes exhibit six-co-ordinate octahedral structures and redox states largely analogous to those of the related terpyridine complexes. The reactivity of the different redox states of cobalt bis-hemi-BTP complex in aqueous environments has been studied with two-phase electrochemistry by immobilisation of the essentially water-insoluble metal complexes on graphite electrodes and the immersion of this modified electrode in an aqueous electrolyte. It was found that redox potentials for the metal-centred reactions were pH-independent whereas the potentials for the ligand-centred reactions were strongly pH-dependent. The reductive degradation of these complexes has been investigated by computational methods. Solvent extraction experiments have been carried out for a range of metals and these show that cobalt(II) and nickel(II) as well as palladium(II), cadmium(II) and lead(II) were all extracted with the ligands 1e and 2c with higher distribution ratios that was observed for americium(III) under the same conditions. The implications of this result for the use of these ligands to separate actinides from nuclear waste are discussed. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
The synthesis of the first example of a new class of tetradentate reagents for the efficient separation of americium(Ill) and europium(111) is reported together with the structure of the complex formed with europium(III), (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Using bis(3,5-dimethylpyrazol-1-yl)methane as an N-N donor ligand, a trans-[Ru-III(N-N)(2)Cl-2](+) core has been isolated from the direct reaction of the ligand with RuCl3 center dot xH(2)O and characterized structurally for the. first time. The core displays a rhombic EPR spectrum and a quasireversible Ru(II/III) couple with an E-1/2 of -0.34 V versus NHE. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
New hydrophobic, tetradentate nitrogen heterocyclic reagents, 6.6'-bis-(5,6-dialkyl- 1,2,4-triazin-3-yl)2,2'-bipyridines (BTBPs) have been synthesised. These reagents form complexes with lanthanides and crystal structures with 11 different lanthanides have been determined. The majority of the structures show the lanthanide to be 10-coordinate with stoichiometry [Ln(BTBP)(NO3)(3)] although Yb and Lu are 9-coordinate in complexes with stoichiometry [Ln(BTBP)(NO3)(2)(H2O)](NO3). In these complexes the BTBP ligands are tetradentate and planar with donor nitrogens mutually cis i.e. in the cis, cis, cis conformation. Crystal structures of two free molecules, namely C2-BTBP and CyMe4-BTBP have also been determined and show different conformations described as cis, trans, cis and trans, trans, trans respectively. A NMR titration between lanthanum nitrate and C5-BTBP showed that two different complexes are to be found in solution, namely [La(C5-BTBP)(2)](3+) and [La(C5-BTBP)(NO3)(3)]. The BTBPs dissolved in octanol were able to extract Am(III) and Eu(III) from 1 M nitric acid with large separation factors.
Resumo:
The tetradentate ligand (C-5-BTBP) was able to extract americium(III) selectively from nitric acid. In octanol/kerosene the distribution ratios suggest that stripping will be possible. C-5-BTBP has unusual properties and potentially offers a means of separating metals, which otherwise are difficult to separate. For example C-5-BTBP has the potential to separate paliadium(II) from a mixture containing rhodium(III) and ruthenium(H) nitrosyl. In addition, C-5-BTBP has the potential to remove traces of cadmium from effluent or from solutions of other metals contaminated with cadmium. C-5-BTBP has potential as a reagent for the separation of americium(III) from solutions contaminated with iron(III) and nickel(II), hence offering a means of concentrating americium(III) for analytical purposes from nitric acid solutions containing high concentrations of iron(III) or nickel(II).
Resumo:
The title compound,{(C2H10N2)(2)[Mn(PO4)(2)]}(n), contains anionic square-twisted chains of formula [Mn(PO4)(2)](4-) constructed from corner-sharing four-membered rings of alternating MnO4 and PO4 units. The Mn and P atoms have distorted tetrahedral coordination and the Mn atom lies on a twofold axis. The linear manganese-phosphate chains are held together by hydrogen-bonding interactions involving the framework O atoms and the H atoms of the ethane-1,2-diammonium cations, which lie in the interchain spaces.
Resumo:
The extraction of americium(III), curium(III), and the lanthanides(III) from nitric acid by 6,6'- bis (5,5,8,8-tetramethyl-5,6,7,8-tetrahydro-benzo[1,2,4]triazin-3-yl)-[2,2'] bipyridine (CyMe4-BTBP) has been studied. Since the extraction kinetics were slow, N,N'-dimethyl-N,N'-dioctyl-2-(2-hexyloxy-ethyl)malonamide (DMDOHEMA) was added as a phase transfer reagent. With a mixture of 0.01 M CyMe4-BTBP + 0.25 M DMDOHEMA in n -octanol, extraction equilibrium was reached within 5 min of mixing. At a nitric acid concentration of 1 M, an americium(III) distribution ratio of approx. 10 was achieved. Americium(III)/lanthanide(III) separation factors between 50 (dysprosium) and 1500 (lanthanum) were obtained. Whereas americium(III) and curium(III) were extracted as disolvates, the stoichiometries of the lanthanide(III) complexes were not identified unambiguously, owing to the presence of DMDOHEMA. In the absence of DMDOHEMA, both americium(III) and europium(III) were extracted as disolvates. Back-extraction with 0.1 M nitric acid was thermodynamically possible but rather slow. Using a buffered glycolate solution of pH=4, an americium(III) distribution ratio of 0.01 was obtained within 5 min of mixing. There was no evidence of degradation of the extractant, for example, the extraction performance of CyMe4-BTBP during hydrolylsis with 1 M nitric acid did not change over a two month contact.
Resumo:
Three new mononuclear complexes of nitrogen-sulfur donor sets, formulated as (Fe-II(L)Cl-2] (1), [Co-II(L)Cl-2] (2) and [Ni-II(L)Cl-2] (3) where L = 1,3-bis(2-pyridylmethylthio)propane, were synthesized and isolated in their pure form. All the complexes were characterized by physicochemical and spectroscopic methods. The solid state structures of complexes I and 3 have been established by single crystal X-ray crystallography. The structural analysis evidences isomorphous crystals with the metal ion in a distorted octahedral geometry that comprises NSSN ligand donors with trans located pyridine rings and chlorides in cis positions. In dimethylformamide solution, the complexes were found to exhibit Fe-II/Fe-III, co(II)/co(III) and Ni-II/Ni-III quasi-reversible redox couples in cyclic voltammograms with E-1/2 values (versus Ag/AgCl at 298 K) of +0.295, +0.795 and +0.745 V for 1, 2 and 3, respectively. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The new ligand 6,6 ''-bis(5,5,8,8-tetramethyl-5,6,7,8-tetrahydro-1,2,4-benzotriazin-3-yl)2,2':6 ',2 ''-terpyridine (CyMe4-BTTP) has been synthesized in 4 steps from 2,2':6',2 ''-terpyridine. Detailed NMR and mass spectrometry studies indicate that the ligand forms 1 : 2 complexes with lanthanide(III) perchlorates where the aliphatic rings are conformationally constrained whereas 1 : 1 complexes are formed with lanthanide(III) nitrates where the rings are conformationally mobile. An optimized structure of the 1 : 2 solution complex with Yb(III) was obtained from the relative magnitude of the induced paramagnetic shifts. X-Ray crystallographic structures of the ligand and of its 1 : 1 complex with Y(III) were also obtained. The NMR and mass spectra of [Pd(CyMe4-BTTP)](n)(2n+) are consistent with a dinuclear double helical structure (n = 2). In the absence of a phase-modifier, CyMe4-BTTP in n-octanol showed a maximum distribution coefficient of Am(III) of 0.039 (+/-20%) and a maximum separation factor of Am(III) over Eu(III) of 12.0 from nitric acid. The metal(III) cations are extracted as the 1 : 1 complex from nitric acid. The generally low distribution coefficients observed compared with the BTBPs arise because the 1 : 1 complex of CyMe4-BTTP is considerably less hydrophobic than the 1 : 2 complexes formed by the BTBPs. In M(BTTP)(3+) complexes, there is a competition between the nitrate ions and the ligand for the complexation of the metal.
Resumo:
Reaction of the dinuclear complex [{Rh(CO)(2)}(2) (mu-Cl)(2)]with an alpha-diimine ligand, 1,2- bis[(2,6-diisopropylphenyl) imino] acenaphthene (iPr(2)Ph-bian), produces square-planar [RhCl(CO)(iPr(2)Ph-bian)]. For the first time, 2: 1 and 1: 1 alpha-diimine/dimer reactions yielded the same product. The rigidity of iPr(2)Ph-bian together with its flexible electronic properties and steric requirements of the 2,6-diisopropyl substituents on the benzene rings allow rapid closure of a chelate bond and replacement of a CO ligand instead of chloride. A resonance Raman study of [RhCl(CO)(iPr(2)Ph-bian)] has revealed a predominant Rh-to-bian charge transfer (MLCT) character of electronic transitions in the visible spectral region. The stabilisation of [RhCl(CO)(iPr(2)Ph-bian)] in lower oxidation states by the pi-acceptor iPr(2)Ph-bian ligand was investigated in situ by UV-VIS, IR and EPR spectroelectrochemistry at variable temperatures. The construction of the novel UV-VIS-NIR-IR low-temperature OTTLE cell used in these studies is described in the last part of the paper.