26 resultados para 0908 Food Sciences
Resumo:
The antioxidant capacity of some herbs used in dietology practice was determined by the DPPH free radical method, which was calibrated with ascorbic acid. Partially hydrophilic phenolic compounds are the most active compounds in plants, and therefore water was used as the extraction agent. Besides antioxidant capacity, the content of total phenolic compounds was also measured and a strong correlation between these two variables was found. The extracts of lemon balm (Melissa officinalis L.), peppermint (Mentha x piperita L.), oregano (Origanum vulgare L.), Greek oregano (Origanum heracleoticum L.), sage (Salvia officinalis L.) and winter savory (Satureja montana L.) showed very significant activity. It was comparable with the activity of green tea in the case of oregano and peppermint. Lower activity was observed in the case of rosemary (Rosmarinus officinalis L.), marjoram (Majorana hortensis), hyssop (Hyssopus officinalis L.), sweet basil (Ocimum basilicum), and lovage (Levisticum officinale Koch.). The inhibitory activity of the herb extracts was monitored also during the autooxidation of lard. Very high antioxidant capacity was observed mainly in sage samples, but also in marjoram and Greek oregano. The extracts of peppermint, oregano, rosemary, winter savory, lemon balm and hyssop showed middle activity comparable to that of alpha-tocopherol. The antioxidant capacity of sweet basil and lovage was insignificant.
Resumo:
The roles of some cake ingredients – oil, a leavening agent, and inulin – in the structure and physicochemical properties of batter and cakes were studied in four different formulations. Oil played an important role in the batter stability, due to its contribution to increasing batter viscosity and occluding air during mixing. The addition of the leavening agent was crucial to the final height and sponginess of the cakes. When inulin was used as a fat replacer, the absence of oil caused a decrease in the stability of the batter, where larger air bubbles were occluded. Inulin dispersed uniformly in the batter could create a competition for water with the flour components: gluten was not properly hydrated and some starch granules were not fully incorporated into the matrix. Thus, the development of a continuous network was disrupted and the cake was shorter and softer; it contained interconnected air cells in the crumb, and was easily crumbled. The structure studies were decisive to understand the physicochemical properties.
Resumo:
This study examines the food-chain transfer of Zn from two plant species, Urtica dioica (stinging nettle) and Acer pseudoplatanus (sycamore maple), into their corresponding aphid species, Microlophium carnosum and Drepanosiphum platanoidis. The plants were grown in a hydroponic system using solutions with increasing concentrations of Zn from 0.02 to 41.9 mg Zn/l. Above-ground tissue concentrations in U. dioica and M. carnosum increased with increasing Zn exposure (p < 0.001). Zn concentrations in A. pseudoplatanus also increased with solution concentration from the control to the 9.8 mg Zn/l solution, above which concentrations remained constant. Zn concentrations in both D. platanoidis and the phloem tissue of A. pseudoplatanus were not affected by the Zn concentration in the watering solution. It appears that A. pseudoplatanus was able to limit Zn transport in the phloem, resulting in constant Zn exposure to the aphids. Zn concentrations in D. platanoidis were around three times those in M. carnosum. Concentrations of Zn in two aphid species are dependant on species and exposure.
Resumo:
In a vault on the outskirts of Paris, a cylinder of platinum-iridium sits in a safe under three layers of glass. It is the kilogram, kept by the Bureau International des Poids et Mesures (BIPM), which is the international home of metrology. Metrology is the science of measurement, and it is of fundamental importance to us all. It is essential for trade, commerce, navigation, transport, communication, surveying, engineering, and construction. It is essential for medical diagnosis and treatment, health and safety, food and consumer protection, and for preserving the environment—e.g., measuring ozone in the atmosphere. Many of these applications are of particular relevance to chemistry and thus to IUPAC. In all these activities we need to make measurements reliably—to an appropriate and known level of uncertainty. The financial implications of metrology are enormous. In the United States, for example, some 15% of the gross domestic product is spent on healthcare, involving reliable quantitative measurements for both diagnosis and treatment.
Resumo:
Consumers' attitudes to trust and risk are key issues in food safety research and attention needs to be focused on clearly defining a framework for analysing consumer behaviour in these terms. In order to achieve this, a detailed review of the recent literature surrounding risk, trust and the relationship between the two must be conducted. This paper aims to collate the current social sciences literature in the fields of food safety, trust and risk. It provides an insight into the economic and other modelling procedures available to measure consumers' attitudes to risk and trust in food safety and specifically notes the need for future research to concentrate on examining risk and trust as inter-related variables rather than two distinct, mutually exclusive concepts. A framework is proposed which it is hoped will assist in devising more effective research to support risk communication to consumers.
Resumo:
Understanding the role of the diet in determining human health and disease is one major objective of modern nutrition. Mammalian biocomplexity necessitates the incorporation of systems biology technologies into contemporary nutritional research. Metabonomics is a powerful approach that simultaneously measures the low-molecular-weight compounds in a biological sample, enabling the metabolic status of a biological system to be characterized. Such biochemical profiles contain latent information relating to inherent parameters, such as the genotype, and environmental factors, including the diet and gut microbiota. Nutritional metabonomics, or nutrimetabonomics, is being increasingly applied to study molecular interactions between the diet and the global metabolic system. This review discusses three primary areas in which nutrimetabonomics has enjoyed successful application in nutritional research: the illumination of molecular relationships between nutrition and biochemical processes; elucidation of biomarker signatures of food components for use in dietary surveillance; and the study of complex trans-genomic interactions between the mammalian host and its resident gut microbiome. Finally, this review illustrates the potential for nutrimetabonomics in nutritional science as an indispensable tool to achieve personalized nutrition.
Resumo:
The UK Biotechnology and Biological Sciences Research Council’s Advanced Training Partnerships initiative represents a significant investment in the provision of high-level skills for the UK food industry sector to address global food security from farm to fork. This paper summarises the background, aims and scope of the Advanced Training Partnerships, their development so far, and offers a view on future directions and evaluation of impact.
Resumo:
Intensive land use reduces the diversity and abundance of many soil biota, with consequences for the processes that they govern and the ecosystem services that these processes underpin. Relationships between soil biota and ecosystem processes have mostly been found in laboratory experiments and rarely are found in the field. Here, we quantified, across four countries of contrasting climatic and soil conditions in Europe, how differences in soil food web composition resulting from land use systems (intensive wheat rotation, extensive rotation, and permanent grassland) influence the functioning of soils and the ecosystem services that they deliver. Intensive wheat rotation consistently reduced the biomass of all components of the soil food web across all countries. Soil food web properties strongly and consistently predicted processes of C and N cycling across land use systems and geographic locations, and they were a better predictor of these processes than land use. Processes of carbon loss increased with soil food web properties that correlated with soil C content, such as earthworm biomass and fungal/bacterial energy channel ratio, and were greatest in permanent grassland. In contrast, processes of N cycling were explained by soil food web properties independent of land use, such as arbuscular mycorrhizal fungi and bacterial channel biomass. Our quantification of the contribution of soil organisms to processes of C and N cycling across land use systems and geographic locations shows that soil biota need to be included in C and N cycling models and highlights the need to map and conserve soil biodiversity across the world.
Resumo:
Direct effects of soil or its constituents on human health are through its ingestion, inhalation or absorption. The soil contains many infectious organisms that may enter the human body through these pathways, but it also provides organisms on which our earliest antibiotics are based. Indirect effects of soil arise from the quantity and quality of food that humans consume. Trace elements can have both beneficial and toxic effects on humans, especially where the range for optimal intake is narrow. We focus on four trace elements (iodine, iron, selenium and zinc) whose deficiencies have substantial effects on human health. As the world’s population increases issues of food security become more pressing, as does the need to sustain soil fertility and minimize its degradation. Lack of adequate food and food of poor nutritional quality lead to differing degrees of under-nutrition, which in turn causes ill health. Soil and land are finite resources and agricultural land is under severe competition from other uses. Relationships between soil and health are often difficult to extricate because of the many confounding factors present. Nevertheless, recent scientific understanding of soil processes and factors that affect human health are enabling greater insight into the effects of soil on our health. Multidisciplinary research that includes soil science, agronomy, agricultural sustainability, toxicology, epidemiology and the medical sciences will facilitate the discovery of new antibiotics, a greater understanding of how materials added to soil used for food production affect health and deciphering of the complex relationships between soil and human health.
Resumo:
Food industry is critical to any nation’s health and well-being; it is also critical to the economic health of a nation, since it can typically constitute over a fifth of the nation’s manufacturing GDP. Food Engineering is a discipline that ought to be at the heart of the food industry. Unfortunately, this discipline is not playing its rightful role today: engineering has been relegated to play the role of a service provider to the food industry, instead of it being a strategic driver for the very growth of the industry. This paper hypothesises that food engineering discipline, today, seems to be continuing the way it was in the last century, and has not risen to the challenges that it really faces. This paper therefore categorises the challenges as those being posed by: 1. Business dynamics, 2. Market forces, 3. Manufacturing environment and 4. Environmental Considerations, and finds the current scope and subject-knowledge competencies of food engineering to be inadequate in meeting these challenges. The paper identifies: a) health, b) environment and c) security as the three key drivers of the discipline, and proposes a new definition of food engineering. This definition requires food engineering to have a broader science base which includes biophysical, biochemical and health sciences, in addition to engineering sciences. This definition, in turn, leads to the discipline acquiring a new set of subject-knowledge competencies that is fit-for-purpose for this day and age, and hopefully for the foreseeable future. The possibility of this approach leading to the development of a higher education program in food engineering is demonstrated by adopting a theme based curriculum development with five core themes, supplemented by appropriate enabling and knowledge integrating courses. At the heart of this theme based approach is an attempt to combine engineering of process and product in a purposeful way, termed here as Food Product Realisation Engineering. Finally, the paper also recommends future development of two possible niche specialisation programs in Nutrition and Functional Food Engineering and Gastronomic Engineering. It is hoped that this reconceptualization of the discipline will not only make it more purposeful for the food industry, but it will also make the subject more intellectually challenging and attract bright young minds to the discipline.