37 resultados para 060405 Gene Expression (incl. Microarray and other genome-wide approaches)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is becoming apparent that anti-cancer chemotherapies are increasingly associated with cardiac dysfunction or even congestive heart failure (Minotti et al., 2004; Eliott, 2006; Suter et al., 2004; Ren, 2005). Our data suggest that one of the contributing factors to the cardiotoxicitiy of these drugs may be the activation of the AhR-response (including the increased expression of Cyp1a1) and/or other detoxification program in cardiac myocytes themselves. The induction of such responses may have secondary effects (e.g. to increase the level of intracellular oxidative stress), which may influence the contractility or even survival of cardiac myocytes. Furthermore, the specific response of cardiac myocytes, both with respect to the metabolizing enzymes and the export channels, potentially differs from other cells (e.g. we failed to detect any increase in expression of other “classical” AhR-responsive genes, Ugt1a1 and Ugt1a6). This could account for, for example, the observation that doxoribicinol (the 13-hydroxy form of doxorubicin) accumulates in cardiac myocytes but not in hepatocytes (Del Tacca et al., 1985; Olson et al., 1988). Given the vulnerability of the heart and the almost irreparable damage that can be done by severe oxidative stress, further studies would seem to be merited specifically on the effects of chemotherapeutic agents on cardiac myocytes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Intravenous infusions of glucose and amino acids increase both nitrogen balance and muscle accretion. We hypothesised that co-infusion of glucose ( to stimulate insulin) and essential amino acids (EAA) would act additively to improve nitrogen balance by decreasing muscle protein degradation in association with alterations in muscle expression of components of the ubiquitin-proteasome proteolytic pathway. Methods: We examined the effect of a 5 day intravenous infusions of saline, glucose, EAA and glucose + EAA, on urinary nitrogen excretion and muscle protein degradation. We carried out the study in 6 restrained calves since ruminants offer the advantage that muscle protein degradation can be assessed by excretion of 3 methyl-histidine and multiple muscle biopsies can be taken from the same animal. On the final day of infusion blood samples were taken for hormone and metabolite measurement and muscle biopsies for expression of ubiquitin, the 14-kDa E2 ubiquitin conjugating enzyme, and proteasome sub-units C2 and C8. Results: On day 5 of glucose infusion, plasma glucose, insulin and IGF-1 concentrations were increased while urea nitrogen excretion and myofibrillar protein degradation was decreased. Co-infusion of glucose + EAA prevented the loss of urinary nitrogen observed with EAA infusions alone and enhanced the increase in plasma IGF-1 concentration but there was no synergistic effect of glucose + EAA on the decrease in myofibrillar protein degradation. Muscle mRNA expression of the ubiquitin conjugating enzyme, 14-kDa E2 and proteasome sub-unit C2 were significantly decreased, after glucose but not amino acid infusions, and there was no further response to the combined infusions of glucose + EAA. Conclusion: Prolonged glucose infusion decreases myofibrillar protein degradation, prevents the excretion of infused EAA, and acts additively with EAA to increase plasma IGF-1 and improve net nitrogen balance. There was no evidence of synergistic effects between glucose + EAA infusion on muscle protein degradation or expression of components of the ubiquitin-proteasome proteolytic pathway.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is a strong desire to exploit transcriptomics data from model species for the genetic improvement of non-model crops. Here, we use gene expression profiles from the commercial model Pinus taeda to identify candidate genes implicated in juvenile-mature wood transition in the non-model relative, P. sylvestris. Re-analysis of 'public domain' SAGE data from xylem tissues of P. taeda revealed 283 mature-abundant and 396 juvenile-abundant tags (P < 0.01), of which 70 and 137, respectively matched to genes with known function. Based on sequence similarity, we then isolated 16 putative homologues of genes that in P. taeda exhibited widest divergence in expression between juvenile and mature samples. Candidate expression levels in P. sylvestris were almost invariably differential between juvenile and mature woody tissue samples among two cohorts of five trees collected from the same seed source and selected for genetic uniformity by genetic distance analysis. However, the direction of differential expression was not always consistent with that described in the original P. taeda SAGE data. Correlation was observed between gene expression and juvenile-mature wood anatomical characteristics by OPLS analysis. Four candidates (alpha-tubulin, porin MIP1, lipid transfer protein and aquaporin like protein) apparently had greatest influence on the wood traits measured. Speculative function of these genes in relation to juvenile-mature wood transition is briefly explored. Thus, we demonstrate the feasibility of exploiting SAGE data from a model species to identify consistently differentially expressed candidates in a related non-model species.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Over the years, the MCF7 human breast cancer cell line has provided a model system for the study of cellular and molecular mechanisms in oestrogen regulation of cell proliferation and in progression to oestrogen and antioestrogen independent growth. Global gene expression profiling has shown that oestrogen action in MCF7 cells involves the coordinated regulation of hundreds of genes across a wide range of functional groupings and that more genes are down regulated than upregulated. Adaptation to long-term oestrogen deprivation, which results in loss of oestrogen-responsive growth, involves alterations to gene patterns not only at early time points (0-4 weeks) but continuing through to later times (20-55 weeks), and even involves alterations to patterns of oestrogen-regulated gene expression. Only 48% of the genes which were regulated >= 2-fold by oestradiol in oestrogen-responsive cells retained this responsiveness after long-term oestrogen deprivation but other genes developed de novo oestrogen regulation. Long-term exposure to fulvestrant, which resulted in loss of growth inhibition by the antioestrogen, resulted in some very large fold changes in gene expression up to 10,000-fold. Comparison of gene profiles produced by environmental chemicals with oestrogenic properties showed that each ligand gave its own unique expression profile which suggests that environmental oestrogens entering the human breast may give rise to a more complex web of interference in cell function than simply mimicking oestrogen action at inappropriate times. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Transcriptomic techniques are now being applied in ecotoxicology and toxicology to measure the impact of stressors and develop understanding of mechanisms of toxicity. Microarray technology in particular offers the potential to measure thousands of gene responses simultaneously. However, it is important that microarrays responses should be validated, at least initially, using real-time quantitative polymerase chain reaction (QPCR). The accurate measurement of target gene expression requires normalisation to an invariant internal control e. g., total RNA or reference genes. Reference genes are preferable, as they control for variation inherent in the cDNA synthesis and PCR. However, reference gene expression can vary between tissues and experimental conditions, which makes it crucial to validate them prior to application. Results: We evaluated 10 candidate reference genes for QPCR in Daphnia magna following a 24 h exposure to the non-steroidal anti-inflammatory drug (NSAID) ibuprofen (IB) at 0, 20, 40 and 80 mg IB l(-1). Six of the 10 candidates appeared suitable for use as reference genes. As a robust approach, we used a combination normalisation factor (NF), calculated using the geNorm application, based on the geometric mean of three selected reference genes: glyceraldehyde-3-phosphate dehydrogenase, ubiquitin conjugating enzyme and actin. The effects of normalisation are illustrated using as target gene leukotriene B4 12-hydroxydehydrogenase (Ltb4dh), which was upregulated following 24 h exposure to 63-81 mg IB l(-1). Conclusions: As anticipated, use of the NF clarified the response of Ltb4dh in daphnids exposed to sublethal levels of ibuprofen. Our findings emphasise the importance in toxicogenomics of finding and applying invariant internal QPCR control(s) relevant to the study conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The expression of two metallothionein genes (Mt-I and Mt-II) in the liver, kidney, and gonad of bank voles collected at four metal-contaminated sites (Cd, Zn, Pb, and Fe) were measured using the quantitative real-time PCR method (QPCR). Relative Mt gene expression was calculated by applying a normalization factor (NF) using the expression of two housekeeping genes, ribosomal 18S and beta-actin. Relative Mt expression in tissues of animals from contaminated sites was up to 54.8-fold higher than those from the reference site for Mt-I and up to 91.6-fold higher for Mt-II. Mt-II gene expression in the livers of bank voles from contaminated sites was higher than Mt-I gene expression. Inversely, Mt-II expression in the kidneys of voles was lower than Mt-I expression. Positive correlations between cadmium levels in the tissues and Mt-I were obtained in all studied tissues. Zinc, which undergoes homeostatic regulation, correlated positively with both Mt-I and Mt-II gene expression only in the kidney. Results showed that animals living in chronically contaminated environments intensively activate detoxifying mechanisms such as metallothionein expression. This is the first time that QPCR techniques to measure MT gene expression have been applied to assess the impact of environmental metal pollution on field collected bank voles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A series of promoter probe vectors for use in Gram-negative bacteria has been made in two broad-host-range vectors, pOT (pBBR replicon) and pJP2 (incP replicon). Reporter fusions can be made to gfpUV, gfprnut3.1, unstable gfpmut3.1 variants (LAA, LVA, AAV and ASV), gfp+, dsRed2, dsRedT3, dsRedT4, mRFP1, gusA or lacZ. The two vector families, pOT and pJP2, are compatible with one another and share the same polylinker for facile interchange of promoter regions. Vectors based on pJP2 have the advantage of being ultra-stable in the environment due to the presence of the parABCDE genes. As a confirmation of their usefulness, the dicarboxylic acid transport system promoter (dctA(p)) was cloned into a pOT (pRU1097)- and a pJP2 (pRU1156)-based vector and shown to be expressed by Rhizobium leguminosarum in infection threads of vetch. This indicates the presence of dicarboxylates at the earliest stages of nodule formation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Supplementation of diets with plant extracts such as ginkgo biloba extract (EGb 761®) (definition see editorial) for health and prevention of degenerative diseases is popular. However, it is often difficult to analyse the biological activities of plant extracts due to their complex nature and the possible synergistic and/or antagonistic effects of their components. Genome-wide expression monitoring with high-density oligonucleotide arrays provides one way to examine the molecular targets of plant extracts and may prove a useful tool in evaluating their therapeutic claims. Here, we will briefly describe some of our work on the effect of EGb 761® on differential gene expression in relation to its potential anti-carcinogenic, photoprotective and neuromodulatory properties.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We previously showed that growth of the nontumorigenic, immortal murine melanocyte line Mel-ab correlates with the depletion of protein kinase C (PKC), whereas quiescence is associated with elevated levels of this enzyme (Brooks G, et al., Cancer Res 51: 3281–3288, 1991). Here we report responses that occur in these cells downstream of PKC activation or downregulation. We examined induction of 12-O-tetradecanoylphorbol-13-acetate (TPA)-inducible sequence (TIS) gene expression in Mel-ab melanocytes and in their transformed counterparts, B16 melanoma cells. Exposure of quiescent Mel-ab cells to the PKC-activating phorbol esters TPA or sapintoxin A at 81 nM for 2 h increased levels of mRNA for six of seven TIS genes examined (twofold to 80-fold increase in steady-state RNA levels for TIS 1, 7, 8, 11, 21, and 28 (c-fos); TIS 10 expression was not affected). No induction of 115 gene expression was observed either in growing Mel-ab cells maintained in 324 nM phorbol 12,13-dibutyrate or in B16 cells previously unexposed to phorbol esters, in which normal PKC levels were endogenously depressed. The cAMP-elevating agents choleratoxin (10 nM) and dibutyryl cyclic AMP (2.5 mM) increased levels of TIS mRNA (with the exception of TIS 10) in both proliferating Mel-ab and B16 cells, suggesting that downregulation of the PKC pathway is specific and not a consequence of a general inhibition of all signalling pathways.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The related inflammatory cytokines, interleukin- (IL-) 1β and IL-33, are both implicated in the response of the heart to injury. They also activate mitogen-activated protein kinases (MAPKs) in cardiac myocytes. The hypertrophic Gq protein-coupled receptor agonist endothelin-1 is a potentially cardioprotective peptide and may modulate the inflammatory response. Endothelin-1 also stimulates (MAPKs) in cardiac myocytes and promotes rapid changes in expression of mRNAs encoding intercellular and intracellular signalling components including receptors for IL-33 (ST2) and phosphoprotein phosphatases. Prior exposure to endothelin-1 may specifically modulate the response to IL-33 and, more globally, influence MAPK activation by different stimuli. Neonatal rat ventricular myocytes were exposed to IL-1β or IL-33 with or without pre-exposure to endothelin-1 (5 h) and MAPK activation assessed. IL-33 activated ERK1/2, JNKs and p38-MAPK, but to a lesser degree than IL-1β. Endothelin-1 increased expression of soluble IL-33 receptors (sST2 receptors) which may prevent binding of IL-33 to the cell-surface receptors. However, pretreatment with endothelin-1 only inhibited activation of p38-MAPK by IL-33 with no significant influence on ERK1/2 and a small increase in activation of JNKs. Inhibition of p38-MAPK signalling following pretreatment with endothelin-1 was also detected with IL-1β, H2O2 or tumour necrosis factor α (TNFα) indicating an effect intrinsic to the signalling pathway. Endothelin-1 pretreatment suppressed the increase in expression of IL-6 mRNA induced by IL-1β and decreased the duration of expression of TNFα mRNA. Coupled with the general decrease in p38-MAPK signalling, we conclude that endothelin-1 attenuates the cardiac myocyte inflammatory response, potentially to confer cardioprotection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Red meat consumption is associated with an increased colorectal cancer (CRC) risk, which may be due to an increased endogenous formation of genotoxic N-nitroso compounds (NOCs). To assess the impact of red meat consumption on potential risk factors of CRC, we investigated the effect of a 7-day dietary red meat intervention in human subjects on endogenous NOC formation and fecal water genotoxicity in relation to genome-wide transcriptomic changes induced in colonic tissue. The intervention showed no effect on fecal NOC excretion but fecal water genotoxicity significantly increased in response to red meat intake. Colonic inflammation caused by inflammatory bowel disease, which has been suggested to stimulate endogenous nitrosation, did not influence fecal NOC excretion or fecal water genotoxicity. Transcriptomic analyses revealed that genes significantly correlating with the increase in fecal water genotoxicity were involved in biological pathways indicative of genotoxic effects, including modifications in DNA damage repair, cell cycle, and apoptosis pathways. Moreover, WNT signaling and nucleosome remodeling pathways were modulated which are implicated in human CRC development. We conclude that the gene expression changes identified in this study corroborate the genotoxic potential of diets high in red meat and point towards a potentially increased CRC risk in humans.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Prolonged hemodynamic load as a result of hypertension eventually leads to maladaptive cardiac adaptation and heart failure. The signalling pathways that underlie these changes are still poorly understood. The adaptive response to mechanical load is mediated by mechanosensors which convert the mechanical stimuli into a biological response. We examined the effect of cyclic mechanical stretch on myocyte adaptation using neonatal rat ventricular myocytes with 10% (adaptive) or 20% (maladaptive) maximum strain, 1Hz for 48 hours to mimic in vivo mechanical stress. Cells were also treated with and without L-NAME, a general nitric oxide synthase (NOS) inhibitor to suppress NO production. Maladaptive 20% mechanical stretch led to a significant loss of intact sarcomeres which was rescued by LNAME (P<0.05, n≥5 cultures). We hypothesized that the mechanism was through NOinduced alteration of myocyte gene expression. L-NAME up-regulated the mechanosensing proteins Muscle LIM protein (MLP (by 100%, p<0.05, n=4 cultures)) and lipoma preferred partner, a novel cardiac protein (LPP (by 80%, p<0.05, n=4 cultures)). L-NAME also significantly altered the subcellular localisation of LPP and MLP in a manner that favoured growth and adaptation. These findings suggest that NO participates in stretch-mediated adaptation. The use of isoform selective NOS inhibitors indicated a complex interaction between iNOS and nNOS isoforms regulate gene expression. LPP knockdown by siRNA led to formation of α-actinin aggregates and Z-bodies showing that myofibrillogenesis was impaired. There was an up-regulation of E3 ubiquitin ligase (MUL1) by 75% (P<0.05, n=5 cultures). This indicates that NO contributes to stretch-mediated adaptation via the upregulation of proteins associated mechansensing and myofibrillogenesis, thereby presenting potential therapeutic targets during the progression of heart failure. Keywords: Mechanotransduction, heart failure, stretch, heart, hypertrophy