34 resultados para Échocardiographie Doppler
Resumo:
In this paper, observations by a ground-based vertically pointing Doppler lidar and sonic anemometer are used to investigate the diurnal evolution of boundary-layer turbulence in cloudless, cumulus and stratocumulus conditions. When turbulence is driven primarily by surface heating, such as in cloudless and cumulus-topped boundary layers, both the vertical velocity variance and skewness follow similar profiles, on average, to previous observational studies of turbulence in convective conditions, with a peak skewness of around 0.8 in the upper third of the mixed layer. When the turbulence is driven primarily by cloud-top radiative cooling, such as in the presence of nocturnal stratocumulus, it is found that the skewness is inverted in both sign and height: its minimum value of around −0.9 occurs in the lower third of the mixed layer. The profile of variance is consistent with a cloud-top cooling rate of around 30Wm−2. This is also consistent with the evolution of the thermodynamic profile and the rate of growth of the mixed layer into the stable nocturnal boundary layer from above. In conditions where surface heating occurs simultaneously with cloud-top cooling, the skewness is found to be useful for diagnosing the source of the turbulence, suggesting that long-term Doppler lidar observations would be valuable for evaluating boundary-layer parametrization schemes. Copyright c 2009 Royal Meteorological Society
Resumo:
Several previous studies have attempted to assess the sublimation depth-scales of ice particles from clouds into clear air. Upon examining the sublimation depth-scales in the Met Office Unified Model (MetUM), it was found that the MetUM has evaporation depth-scales 2–3 times larger than radar observations. Similar results can be seen in the European Centre for Medium-Range Weather Forecasts (ECMWF), Regional Atmospheric Climate Model (RACMO) and Météo-France models. In this study, we use radar simulation (converting model variables into radar observations) and one-dimensional explicit microphysics numerical modelling to test and diagnose the cause of the deep sublimation depth-scales in the forecast model. The MetUM data and parametrization scheme are used to predict terminal velocity, which can be compared with the observed Doppler velocity. This can then be used to test the hypothesis as to why the sublimation depth-scale is too large within the MetUM. Turbulence could lead to dry air entrainment and higher evaporation rates; particle density may be wrong, particle capacitance may be too high and lead to incorrect evaporation rates or the humidity within the sublimating layer may be incorrectly represented. We show that the most likely cause of deep sublimation zones is an incorrect representation of model humidity in the layer. This is tested further by using a one-dimensional explicit microphysics model, which tests the sensitivity of ice sublimation to key atmospheric variables and is capable of including sonde and radar measurements to simulate real cases. Results suggest that the MetUM grid resolution at ice cloud altitudes is not sufficient enough to maintain the sharp drop in humidity that is observed in the sublimation zone.
Resumo:
Normally wind measurements from Doppler radars rely on the presence of rain. During fine weather, insects become a potential radar target for wind measurement. However, it is difficult to separate ground clutter and insect echoes when spectral or polarimetric methods are not available. Archived reflectivity and velocity data from repeated scans provide alternative methods. The probability of detection (POD) method, which maps areas with a persistent signal as ground clutter, is ineffective when most scans also contain persistent insect echoes. We developed a clutter detection method which maps the standard deviation of velocity (SDV) over a large number of scans, and can differentiate insects and ground clutter close to the radar. Beyond the range of persistent insect echoes, the POD method more thoroughly removes ground clutter. A new, pseudo-probability clutter map was created by combining the POD and SDV maps. The new map optimised ground clutter detection without removing insect echoes.
Resumo:
The assimilation of Doppler radar radial winds for high resolution NWP may improve short term forecasts of convective weather. Using insects as the radar target, it is possible to provide wind observations during convective development. This study aims to explore the potential of these new observations, with three case studies. Radial winds from insects detected by 4 operational weather radars were assimilated using 3D-Var into a 1.5 km resolution version of the Met Office Unified Model, using a southern UK domain and no convective parameterization. The effect on the analysis wind was small, with changes in direction and speed up to 45° and 2 m s−1 respectively. The forecast precipitation was perturbed in space and time but not substantially modified. Radial wind observations from insects show the potential to provide small corrections to the location and timing of showers but not to completely relocate convergence lines. Overall, quantitative analysis indicated the observation impact in the three case studies was small and neutral. However, the small sample size and possible ground clutter contamination issues preclude unequivocal impact estimation. The study shows the potential positive impact of insect winds; future operational systems using dual polarization radars which are better able to discriminate between insects and clutter returns should provided a much greater impact on forecasts.
Resumo:
Urban boundary layers (UBLs) can be highly complex due to the heterogeneous roughness and heating of the surface, particularly at night. Due to a general lack of observations, it is not clear whether canonical models of boundary layer mixing are appropriate in modelling air quality in urban areas. This paper reports Doppler lidar observations of turbulence profiles in the centre of London, UK, as part of the second REPARTEE campaign in autumn 2007. Lidar-measured standard deviation of vertical velocity averaged over 30 min intervals generally compared well with in situ sonic anemometer measurements at 190 m on the BT telecommunications Tower. During calm, nocturnal periods, the lidar underestimated turbulent mixing due mainly to limited sampling rate. Mixing height derived from the turbulence, and aerosol layer height from the backscatter profiles, showed similar diurnal cycles ranging from c. 300 to 800 m, increasing to c. 200 to 850 m under clear skies. The aerosol layer height was sometimes significantly different to the mixing height, particularly at night under clear skies. For convective and neutral cases, the scaled turbulence profiles resembled canonical results; this was less clear for the stable case. Lidar observations clearly showed enhanced mixing beneath stratocumulus clouds reaching down on occasion to approximately half daytime boundary layer depth. On one occasion the nocturnal turbulent structure was consistent with a nocturnal jet, suggesting a stable layer. Given the general agreement between observations and canonical turbulence profiles, mixing timescales were calculated for passive scalars released at street level to reach the BT Tower using existing models of turbulent mixing. It was estimated to take c. 10 min to diffuse up to 190 m, rising to between 20 and 50 min at night, depending on stability. Determination of mixing timescales is important when comparing to physico-chemical processes acting on pollutant species measured simultaneously at both the ground and at the BT Tower during the campaign. From the 3 week autumnal data-set there is evidence for occasional stable layers in central London, effectively decoupling surface emissions from air aloft.
Resumo:
A new technique for objective classification of boundary layers is applied to ground-based vertically pointing Doppler lidar and sonic anemometer data. The observed boundary layer has been classified into nine different types based on those in the Met Office ‘Lock’ scheme, using vertical velocity variance and skewness, along with attenuated backscatter coefficient and surface sensible heat flux. This new probabilistic method has been applied to three years of data from Chilbolton Observatory in southern England and a climatology of boundary-layer type has been created. A clear diurnal cycle is present in all seasons. The most common boundary-layer type is stable with no cloud (30.0% of the dataset). The most common unstable type is well mixed with no cloud (15.4%). Decoupled stratocumulus is the third most common boundary-layer type (10.3%) and cumulus under stratocumulus occurs 1.0% of the time. The occurrence of stable boundary-layer types is much higher in the winter than the summer and boundary-layer types capped with cumulus cloud are more prevalent in the warm seasons. The most common diurnal evolution of boundary-layer types, occurring on 52 days of our three-year dataset, is that of no cloud with the stability changing from stable to unstable during daylight hours. These results are based on 16393 hours, 62.4% of the three-year dataset, of diagnosed boundary-layer type. This new method is ideally suited to long-term evaluation of boundary-layer type parametrisations in weather forecast and climate models.
Resumo:
Currently there are few observations of the urban wind field at heights other than rooftop level. Remote sensing instruments such as Doppler lidars provide wind speed data at many heights, which would be useful in determining wind loadings of tall buildings, and predicting local air quality. Studies comparing remote sensing with traditional anemometers carried out in flat, homogeneous terrain often use scan patterns which take several minutes. In an urban context the flow changes quickly in space and time, so faster scans are required to ensure little change in the flow over the scan period. We compare 3993 h of wind speed data collected using a three-beam Doppler lidar wind profiling method with data from a sonic anemometer (190 m). Both instruments are located in central London, UK; a highly built-up area. Based on wind profile measurements every 2 min, the uncertainty in the hourly mean wind speed due to the sampling frequency is 0.05–0.11 m s−1. The lidar tended to overestimate the wind speed by ≈0.5 m s−1 for wind speeds below 20 m s−1. Accuracy may be improved by increasing the scanning frequency of the lidar. This method is considered suitable for use in urban areas.
Resumo:
To calculate the potential wind loading on a tall building in an urban area, an accurate representation of the wind speed profile is required. However, due to a lack of observations, wind engineers typically estimate the characteristics of the urban boundary layer by translating the measurements from a nearby reference rural site. This study presents wind speed profile data obtained from a Doppler lidar in central London, UK, during an 8 month observation period. Used in conjunction with wind speed data measured at a nearby airport, the data have been used to assess the accuracy of the predictions made by the wind engineering tools currently available. When applied to multiple changes in surface roughness identified from morphological parameters, the non-equilibrium wind speed profile model developed by Deaves (1981) provides a good representation of the urban wind speed profile. For heights below 500 m, the predicted wind speed remains within the 95% confidence interval of the measured data. However, when the surface roughness is estimated using land use as a proxy, the model tends to overestimate the wind speed, particularly for very high wind speed periods. These results highlight the importance of a detailed assessment of the nature of the surface when estimating the wind speed above an urban surface.
Resumo:
The SuperDARN chain of oblique HF radars has provided an opportunity to generate a unique climatology of horizontal winds near the mesopause at a number of high latitude locations, via the Doppler shifted echoes from sources of ionisation in the D-region. Ablating meteor trails form the bulk of these targets, but other phenomena also contribute to the observations. Due to the poor vertical resolution of the radars, care must be taken to reduce possible biases from sporadic-E layers and Polar Mesospheric Summer echoes that can affect the effective altitude of the geophysical parameters being observed. Second, there is strong theoretical and observational evidence to suggest that the radars are picking up echoes from the backward looking direction that will tend to reduce the measured wind strengths. The effect is strongly frequency dependent, resulting in a 20% reduction at 12 MHz and a 50% reduction at 10 MHz. A comparison of the climatologies observed by the Super-DARN Finland radar between September 1999 and September 2000 and that obtained from the adjacent VHF meteor radar located at Kiruna is also presented. The agreement between the two instruments was very good. Extending the analysis to the SuperDARN Iceland East radar indicated that the principles outlined above could be applied successfully to the rest of the SuperDARN network.
Resumo:
Many studies evaluating model boundary-layer schemes focus either on near-surface parameters or on short-term observational campaigns. This reflects the observational datasets that are widely available for use in model evaluation. In this paper we show how surface and long-term Doppler lidar observations, combined in a way to match model representation of the boundary layer as closely as possible, can be used to evaluate the skill of boundary-layer forecasts. We use a 2-year observational dataset from a rural site in the UK to evaluate a climatology of boundary layer type forecast by the UK Met Office Unified Model. In addition, we demonstrate the use of a binary skill score (Symmetric Extremal Dependence Index) to investigate the dependence of forecast skill on season, horizontal resolution and forecast leadtime. A clear diurnal and seasonal cycle can be seen in the climatology of both the model and observations, with the main discrepancies being the model overpredicting cumulus capped and decoupled stratocumulus capped boundary-layers and underpredicting well mixed boundary-layers. Using the SEDI skill score the model is most skillful at predicting the surface stability. The skill of the model in predicting cumulus capped and stratocumulus capped stable boundary layer forecasts is low but greater than a 24 hr persistence forecast. In contrast, the prediction of decoupled boundary-layers and boundary-layers with multiple cloud layers is lower than persistence. This process based evaluation approach has the potential to be applied to other boundary-layer parameterisation schemes with similar decision structures.
Resumo:
Inverse methods are widely used in various fields of atmospheric science. However, such methods are not commonly used within the boundary-layer community, where robust observations of surface fluxes are a particular concern. We present a new technique for deriving surface sensible heat fluxes from boundary-layer turbulence observations using an inverse method. Doppler lidar observations of vertical velocity variance are combined with two well-known mixed-layer scaling forward models for a convective boundary layer (CBL). The inverse method is validated using large-eddy simulations of a CBL with increasing wind speed. The majority of the estimated heat fluxes agree within error with the proscribed heat flux, across all wind speeds tested. The method is then applied to Doppler lidar data from the Chilbolton Observatory, UK. Heat fluxes are compared with those from a mast-mounted sonic anemometer. Errors in estimated heat fluxes are on average 18 %, an improvement on previous techniques. However, a significant negative bias is observed (on average −63%) that is more pronounced in the morning. Results are improved for the fully-developed CBL later in the day, which suggests that the bias is largely related to the choice of forward model, which is kept deliberately simple for this study. Overall, the inverse method provided reasonable flux estimates for the simple case of a CBL. Results shown here demonstrate that this method has promise in utilizing ground-based remote sensing to derive surface fluxes. Extension of the method is relatively straight-forward, and could include more complex forward models, or other measurements.
Resumo:
Mixing layer height (MLH) is one of the key parameters in describing lower tropospheric dynamics and capturing its diurnal variability is crucial, especially for interpreting surface observations. In this paper we introduce a method for identifying MLH below the minimum range of a scanning Doppler lidar when operated at vertical. The method we propose is based on velocity variance in low-elevation-angle conical scanning and is applied to measurements in two very different coastal environments: Limassol, Cyprus, during summer and Loviisa, Finland, during winter. At both locations, the new method agrees well with MLH derived from turbulent kinetic energy dissipation rate profiles obtained from vertically pointing measurements. The low-level scanning routine frequently indicated non-zero MLH less than 100 m above the surface. Such low MLHs were more common in wintertime Loviisa on the Baltic Sea coast than during summertime in Mediterranean Limassol.
Resumo:
In this study, the crosswind (wind component perpendicular to a path, U⊥) is measured by a scintillometer and estimated with Doppler lidar above the urban environment of Helsinki, Finland, for 15 days. The scintillometer allows acquisition of a path-averaged value of U⊥ (U⊥), while the lidar allows acquisition of path-resolved U⊥ (U⊥ (x), where x is the position along the path). The goal of this study is to evaluate the performance of scintillometer U⊥ estimates for conditions under which U⊥ (x) is variable. Two methods are applied to estimate U⊥ from the scintillometer signal: the cumulative-spectrum method (relies on scintillation spectra) and the look-up-table method (relies on time-lagged correlation functions). The values of U⊥ of both methods compare well with the lidar estimates, with root-mean-square deviations of 0.71 and 0.73 m s−1. This indicates that, given the data treatment applied in this study, both measurement technologies are able to obtain estimates of U⊥ in the complex urban environment. The detailed investigation of four cases indicates that the cumulative-spectrum method is less susceptible to a variable U⊥ (x) than the look-up-table method. However, the look-up-table method can be adjusted to improve its capabilities for estimating U⊥ under conditions under for which U⊥ (x) is variable.