423 resultados para S. Warwick
Resumo:
The applicability of AI methods to the Chagas' disease diagnosis is carried out by the use of Kohonen's self-organizing feature maps. Electrodiagnosis indicators calculated from ECG records are used as features in input vectors to train the network. Cross-validation results are used to modify the maps, providing an outstanding improvement to the interpretation of the resulting output. As a result, the map might be used to reduce the need for invasive explorations in chronic Chagas' disease.
Resumo:
This work provides a framework for the approximation of a dynamic system of the form x˙=f(x)+g(x)u by dynamic recurrent neural network. This extends previous work in which approximate realisation of autonomous dynamic systems was proven. Given certain conditions, the first p output neural units of a dynamic n-dimensional neural model approximate at a desired proximity a p-dimensional dynamic system with n>p. The neural architecture studied is then successfully implemented in a nonlinear multivariable system identification case study.
Resumo:
In this paper, we show how a set of recently derived theoretical results for recurrent neural networks can be applied to the production of an internal model control system for a nonlinear plant. The results include determination of the relative order of a recurrent neural network and invertibility of such a network. A closed loop controller is produced without the need to retrain the neural network plant model. Stability of the closed-loop controller is also demonstrated.
Resumo:
Presents a technique for incorporating a priori knowledge from a state space system into a neural network training algorithm. The training algorithm considered is that of chemotaxis and the networks being trained are recurrent neural networks. Incorporation of the a priori knowledge ensures that the resultant network has behaviour similar to the system which it is modelling.
Resumo:
The problem of complexity is particularly relevant to the field of control engineering, since many engineering problems are inherently complex. The inherent complexity is such that straightforward computational problem solutions often produce very poor results. Although parallel processing can alleviate the problem to some extent, it is artificial neural networks (in various forms) which have recently proved particularly effective, even in dealing with the causes of the problem itself. This paper presents an overview of the current neural network research being undertaken. Such research aims to solve the complex problems found in many areas of science and engineering today.
Resumo:
A neural network was used to map three PID operating regions for a two-input two-output steam generator system. The network was used in stand alone feedforward operation to control the whole operating range of the process, after being trained from the PID controllers corresponding to each control region. The network inputs are the plant error signals, their integral, their derivative and a 4-error delay train.
Resumo:
Recurrent neural networks can be used for both the identification and control of nonlinear systems. This paper takes a previously derived set of theoretical results about recurrent neural networks and applies them to the task of providing internal model control for a nonlinear plant. Using the theoretical results, we show how an inverse controller can be produced from a neural network model of the plant, without the need to train an additional network to perform the inverse control.
Resumo:
Presents a method for model based bilateral control of master-slave arm with time delay between master and slave arms, where the system supports cooperative action between manual and automatic modes. The method realises efficiencies in master-slave arm control with the simplicities of a computer and the flexibility of a skilled human operator.
Resumo:
The whole concept of just what is and what is not, intelligence is a vitally important one. As humans interact more with machines, so the similarities and differences between human and machine intelligence need to be looked at in a sensible, scientific way. This paper considers human and machine intelligence and links them closely to physical characteristics, as exhibited by robots. Potential interfaces between humans and machines are also considered, as is the state of the art in direct physical links between humans and machines.
Resumo:
This paper discusses how numerical gradient estimation methods may be used in order to reduce the computational demands on a class of multidimensional clustering algorithms. The study is motivated by the recognition that several current point-density based cluster identification algorithms could benefit from a reduction of computational demand if approximate a-priori estimates of the cluster centres present in a given data set could be supplied as starting conditions for these algorithms. In this particular presentation, the algorithm shown to benefit from the technique is the Mean-Tracking (M-T) cluster algorithm, but the results obtained from the gradient estimation approach may also be applied to other clustering algorithms and their related disciplines.