467 resultados para REGIONAL CLIMATE MODELS
Resumo:
Model simulations of the next few decades are widely used in assessments of climate change impacts and as guidance for adaptation. Their non-linear nature reveals a level of irreducible uncertainty which it is important to understand and quantify, especially for projections of near-term regional climate. Here we use large idealised initial condition ensembles of the FAMOUS global climate model with a 1 %/year compound increase in CO2 levels to quantify the range of future temperatures in model-based projections. These simulations explore the role of both atmospheric and oceanic initial conditions and are the largest such ensembles to date. Short-term simulated trends in global temperature are diverse, and cooling periods are more likely to be followed by larger warming rates. The spatial pattern of near-term temperature change varies considerably, but the proportion of the surface showing a warming is more consistent. In addition, ensemble spread in inter-annual temperature declines as the climate warms, especially in the North Atlantic. Over Europe, atmospheric initial condition uncertainty can, for certain ocean initial conditions, lead to 20 year trends in winter and summer in which every location can exhibit either strong cooling or rapid warming. However, the details of the distribution are highly sensitive to the ocean initial condition chosen and particularly the state of the Atlantic meridional overturning circulation. On longer timescales, the warming signal becomes more clear and consistent amongst different initial condition ensembles. An ensemble using a range of different oceanic initial conditions produces a larger spread in temperature trends than ensembles using a single ocean initial condition for all lead times. This highlights the potential benefits from initialising climate predictions from ocean states informed by observations. These results suggest that climate projections need to be performed with many more ensemble members than at present, using a range of ocean initial conditions, if the uncertainty in near-term regional climate is to be adequately quantified.
Resumo:
Current state-of-the-art global climate models produce different values for Earth’s mean temperature. When comparing simulations with each other and with observations it is standard practice to compare temperature anomalies with respect to a reference period. It is not always appreciated that the choice of reference period can affect conclusions, both about the skill of simulations of past climate, and about the magnitude of expected future changes in climate. For example, observed global temperatures over the past decade are towards the lower end of the range of CMIP5 simulations irrespective of what reference period is used, but exactly where they lie in the model distribution varies with the choice of reference period. Additionally, we demonstrate that projections of when particular temperature levels are reached, for example 2K above ‘pre-industrial’, change by up to a decade depending on the choice of reference period. In this article we discuss some of the key issues that arise when using anomalies relative to a reference period to generate climate projections. We highlight that there is no perfect choice of reference period. When evaluating models against observations, a long reference period should generally be used, but how long depends on the quality of the observations available. The IPCC AR5 choice to use a 1986-2005 reference period for future global temperature projections was reasonable, but a case-by-case approach is needed for different purposes and when assessing projections of different climate variables. Finally, we recommend that any studies that involve the use of a reference period should explicitly examine the robustness of the conclusions to alternative choices.
Resumo:
A theoretically expected consequence of the intensification of the hydrological cycle under global warming is that on average, wet regions get wetter and dry regions get drier (WWDD). Recent studies, however, have found significant discrepancies between the expected pattern of change and observed changes over land. We assess the WWDD theory in four climate models. We find that the reported discrepancy can be traced to two main issues: (1) unforced internal climate variability strongly affects local wetness and dryness trends and can obscure underlying agreement with WWDD, and (2) dry land regions are not constrained to become drier by enhanced moisture divergence since evaporation cannot exceed precipitation over multiannual time scales. Over land, where the available water does not limit evaporation, a “wet gets wetter” signal predominates. On seasonal time scales, where evaporation can exceed precipitation, trends in wet season becoming wetter and dry season becoming drier are also found.
Resumo:
Regional climate modelling was used to produce high resolution climate projections for Africa, under a “business as usual scenario”, that were translated into potential health impacts utilizing a heat index that relates apparent temperature to health impacts. The continent is projected to see increases in the number of days when health may be adversely affected by increasing maximum apparent temperatures (AT) due to climate change. Additionally, climate projections indicate that the increases in AT results in a moving of days from the less severe to the more severe Symptom Bands. The analysis of the rate of increasing temperatures assisted in identifying areas, such as the East African highlands, where health may be at increasing risk due to both large increases in the absolute number of hot days, and due to the high rate of increase. The projections described here can be used by health stakeholders in Africa to assist in the development of appropriate public health interventions to mitigate the potential health impacts from climate change.
Resumo:
Substantial low-frequency rainfall fluctuations occurred in the Sahel throughout the twentieth century, causing devastating drought. Modeling these low-frequency rainfall fluctuations has remained problematic for climate models for many years. Here we show using a combination of state-of-the-art rainfall observations and high-resolution global climate models that changes in organized heavy rainfall events carry most of the rainfall variability in the Sahel at multiannual to decadal time scales. Ability to produce intense, organized convection allows climate models to correctly simulate the magnitude of late-twentieth century rainfall change, underlining the importance of model resolution. Increasing model resolution allows a better coupling between large-scale circulation changes and regional rainfall processes over the Sahel. These results provide a strong basis for developing more reliable and skilful long-term predictions of rainfall (seasons to years) which could benefit many sectors in the region by allowing early adaptation to impending extremes.
Resumo:
Blanket bog occupies approximately 6% of the area of the UK today. The Holocene expansion of this hyperoceanic biome has previously been explained as a consequence of Neolithic forest clearance. However, the present distribution of blanket bog in Great Britain can be predicted accurately with a simple model (PeatStash) based on summer temperature and moisture index thresholds, and the same model correctly predicts the highly disjunct distribution of blanket bog worldwide. This finding suggests that climate, rather than land-use history, controls blanket-bog distribution in the UK and everywhere else. We set out to test this hypothesis for blanket bogs in the UK using bioclimate envelope modelling compared with a database of peat initiation age estimates. We used both pollen-based reconstructions and climate model simulations of climate changes between the mid-Holocene (6000 yr BP, 6 ka) and modern climate to drive PeatStash and predict areas of blanket bog. We compiled data on the timing of blanketbog initiation, based on 228 age determinations at sites where peat directly overlies mineral soil. The model predicts that large areas of northern Britain would have had blanket bog by 6000 yr BP, and the area suitable for peat growth extended to the south after this time. A similar pattern is shown by the basal peat ages and new blanket bog appeared over a larger area during the late Holocene, the greatest expansion being in Ireland,Wales, and southwest England, as the model predicts. The expansion was driven by a summer cooling of about 2 °C, shown by both pollen-based reconstructions and climate models. The data show early Holocene (pre- Neolithic) blanket-bog initiation at over half of the sites in the core areas of Scotland and northern England. The temporal patterns and concurrence of the bioclimate model predictions and initiation data suggest that climate change provides a parsimonious explanation for the early Holocene distribution and later expansion of blanket bogs in the UK, and it is not necessary to invoke anthropogenic activity as a driver of this major landscape change.
Resumo:
European air quality legislation has reduced emissions of air pollutants across Europe since the 1970s, affecting air quality, human health and regional climate. We used a coupled composition-climate model to simulate the impacts of European air quality legislation and technology measures implemented between 1970 and 2010. We contrast simulations using two emission scenarios; one with actual emissions in 2010 and the other with emissions that would have occurred in 2010 in the absence of technological improvements and end-of-pipe treatment measures in the energy, industrial and road transport sectors. European emissions of sulphur dioxide, black carbon (BC) and organic carbon in 2010 are 53%, 59% and 32% lower respectively compared to emissions that would have occurred in 2010 in the absence of legislative and technology measures. These emission reductions decreased simulated European annual mean concentrations of fine particulate matter(PM2.5) by 35%, sulphate by 44%, BC by 56% and particulate organic matter by 23%. The reduction in PM2.5 concentrations is calculated to have prevented 80 000 (37 000–116 000, at 95% confidence intervals) premature deaths annually across the European Union, resulting in a perceived financial benefit to society of US$232 billion annually (1.4% of 2010 EU GDP). The reduction in aerosol concentrations due to legislative and technology measures caused a positive change in the aerosol radiative effect at the top of atmosphere, reduced atmospheric absorption and also increased the amount of solar radiation incident at the surface over Europe. We used an energy budget approximation to estimate that these changes in the radiative balance have increased European annual mean surface temperatures and precipitation by 0.45 ± 0.11 °C and by 13 ± 0.8 mm yr−1 respectively. Our results show that the implementation of European legislation and technological improvements to reduce the emission of air pollutants has improved air quality and human health over Europe, as well as having an unintended impact on the regional radiative balance and climate.
Resumo:
Land cover data derived from satellites are commonly used to prescribe inputs to models of the land surface. Since such data inevitably contains errors, quantifying how uncertainties in the data affect a model’s output is important. To do so, a spatial distribution of possible land cover values is required to propagate through the model’s simulation. However, at large scales, such as those required for climate models, such spatial modelling can be difficult. Also, computer models often require land cover proportions at sites larger than the original map scale as inputs, and it is the uncertainty in these proportions that this article discusses. This paper describes a Monte Carlo sampling scheme that generates realisations of land cover proportions from the posterior distribution as implied by a Bayesian analysis that combines spatial information in the land cover map and its associated confusion matrix. The technique is computationally simple and has been applied previously to the Land Cover Map 2000 for the region of England and Wales. This article demonstrates the ability of the technique to scale up to large (global) satellite derived land cover maps and reports its application to the GlobCover 2009 data product. The results show that, in general, the GlobCover data possesses only small biases, with the largest belonging to non–vegetated surfaces. In vegetated surfaces, the most prominent area of uncertainty is Southern Africa, which represents a complex heterogeneous landscape. It is also clear from this study that greater resources need to be devoted to the construction of comprehensive confusion matrices.
Resumo:
This paper introduces the special issue of Climatic Change on the QUEST-GSI project, a global-scale multi-sectoral assessment of the impacts of climate change. The project used multiple climate models to characterise plausible climate futures with consistent baseline climate and socio-economic data and consistent assumptions, together with a suite of global-scale sectoral impacts models. It estimated impacts across sectors under specific SRES emissions scenarios, and also constructed functions relating impact to change in global mean surface temperature. This paper summarises the objectives of the project and its overall methodology, outlines how the project approach has been used in subsequent policy-relevant assessments of future climate change under different emissions futures, and summarises the general lessons learnt in the project about model validation and the presentation of multi-sector, multi-region impact assessments and their associated uncertainties to different audiences.
Resumo:
Identifying the signature of global warming in the world's oceans is challenging because low frequency circulation changes can dominate local temperature changes. The IPCC fourth assessment reported an average ocean heating rate of 0.21 ± 0.04 Wm−2 over the period 1961–2003, with considerable spatial, interannual and inter-decadal variability. We present a new analysis of millions of ocean temperature profiles designed to filter out local dynamical changes to give a more consistent view of the underlying warming. Time series of temperature anomaly for all waters warmer than 14°C show large reductions in interannual to inter-decadal variability and a more spatially uniform upper ocean warming trend (0.12 Wm−2 on average) than previous results. This new measure of ocean warming is also more robust to some sources of error in the ocean observing system. Our new analysis provides a useful addition for evaluation of coupled climate models, to the traditional fixed depth analyses.
Resumo:
Climate models suggest that extreme precipitation events will become more common in an anthropogenically warmed climate. However, observational limitations have hindered a direct evaluation of model-projected changes in extreme precipitation. We used satellite observations and model simulations to examine the response of tropical precipitation events to naturally driven changes in surface temperature and atmospheric moisture content. These observations reveal a distinct link between rainfall extremes and temperature, with heavy rain events increasing during warm periods and decreasing during cold periods. Furthermore, the observed amplification of rainfall extremes is found to be larger than that predicted by models, implying that projections of future changes in rainfall extremes in response to anthropogenic global warming may be underestimated.
Resumo:
The atmospheric circulation changes predicted by climate models are often described using sea level pressure, which generally shows a strengthening of the mid-latitude westerlies. Recent observed variability is dominated by the Northern Annular Mode (NAM) which is equivalent barotropic, so that wind variations of the same sign are seen at all levels. However, in model predictions of the response to anthropogenic forcing, there is a well-known enhanced warming at low levels over the northern polar cap in winter. This means that there is a strong baroclinic component to the response. The projection of the response onto a NAM-like zonal index varies with height. While at the surface most models project positively onto the zonal index, throughout most of the depth of the troposphere many of the models give negative projections. The response to anthropogenic forcing therefore has a distinctive baroclinic signature which is very different to the NAM
Resumo:
Observations suggest that the mixing ratio of water vapour in the stratosphere has increased by 20–50% between the 1960s and mid-1990s. Here we show that inclusion of such a stratospheric water vapour (SWV) increase in a state-of-the-art climate model modifies the circulation of the extratropical troposphere: the modeled increase in the North Atlantic Oscillation (NAO) index is 40% of the observed increase in NAO index between 1965 and 1995, suggesting that if the SWV trend is real, it explains a significant fraction of the observed NAO trend. Our results imply that SWV changes provide a novel mechanism for communicating the effects of large tropical volcanic eruptions and ENSO events to the extratropical troposphere over timescales of a few years, which provides a mechanism for interannual climate predictability. Finally, we discuss our results in the context of regional climate change associated with changes in methane emissions.
Resumo:
Robust responses and links between the tropical energy and water cycles are investigated using multiple datasets and climate models over the period 1979-2006. Atmospheric moisture and net radiative cooling provide powerful constraints upon future changes in precipitation. While moisture amount is robustly linked with surface temperature, the response of atmospheric net radiative cooling, derived from satellite data, is less coherent. Precipitation trends and relationships with surface temperature are highly sensitive to the data product and the time-period considered. Data from the Special Sensor Microwave Imager (SSM/I) produces the strongest trends in precipitation and response to warming of all the datasets considered. The tendency for moist regions to become wetter while dry regions become drier in response to warming is captured by both observations and models. Citation: John, V. O., R. P. Allan, and B. J. Soden (2009), How robust are observed and simulated precipitation responses to tropical ocean warming?
Resumo:
We compare European Centre for Medium-Range Weather Forecasts 15-year reanalysis (ERA-15) moisture over the tropical oceans with satellite observations and the U.S. National Centers for Environmental Prediction (NCEP) National Center for Atmospheric Research 40-year reanalysis. When systematic differences in moisture between the observational and reanalysis data sets are removed, the NCEP data show excellent agreement with the observations while the ERA-15 variability exhibits remarkable differences. By forcing agreement between ERA-15 column water vapor and the observations, where available, by scaling the entire moisture column accordingly, the height-dependent moisture variability remains unchanged for all but the 550–850 hPa layer, where the moisture variability reduces significantly. Thus the excess variation of column moisture in ERA-15 appears to originate in this layer. The moisture variability provided by ERA-15 is not deemed of sufficient quality for use in the validation of climate models.