283 resultados para Intergovernmental Panel on Climate Change
Resumo:
Aviation causes climate change as a result of its emissions of CO2, oxides of nitrogen, aerosols, and water vapor. One simple method of quantifying the climate impact of past emissions is radiative forcing. The radiative forcing due to changes in CO2 is best characterized, but there are formidable difficulties in estimating the non-CO2 forcings – this is particularly the case for possible aviation-induced changes in cloudiness (AIC). The most recent comprehensive assessment gave a best estimate of the 2005 total radiative forcing due to aviation of about 55–78 mW m−2 depending on whether AIC was included or not, with an uncertainty of at least a factor of 2. The aviation CO2 radiative forcing represents about 1.6% of the total CO2 forcing from all human activities. It is estimated that, including the non-CO2 effects, aviation contributes between 1.3 and 14% of the total radiative forcing due to all human activities. Alternative methods for comparing the future impact of present-day aviation emissions are presented – the perception of the relative importance of the non-CO2 emissions, relative to CO2, depends considerably on the chosen method and the parameters chosen within those methods.
Resumo:
Climate has been changing in the last fifty years in China and will continue to change regardless any efforts for mitigation. Agriculture is a climate-dependent activity and highly sensitive to climate changes and climate variability. Understanding the interactions between climate change and agricultural production is essential for society stable development of China. The first mission is to fully understand how to predict future climate and link it with agriculture production system. In this paper, recent studies both domestic and international are reviewed in order to provide an overall image of the progress in climate change researches. The methods for climate change scenarios construction are introduced. The pivotal techniques linking crop model and climate models are systematically assessed and climate change impacts on Chinese crops yield among model results are summarized. The study found that simulated productions of grain crop inherit uncertainty from using different climate models, emission scenarios and the crops simulation models. Moreover, studies have different spatial resolutions, and methods for general circulation model (GCM) downscaling which increase the uncertainty for regional impacts assessment. However, the magnitude of change in crop production due to climate change (at 700 ppm CO2 eq correct) appears within ±10% for China in these assessments. In most literatures, the three cereal crop yields showed decline under climate change scenarios and only wheat in some region showed increase. Finally, the paper points out several gaps in current researches which need more studies to shorten the distance for objective recognizing the impacts of climate change on crops. The uncertainty for crop yield projection is associated with climate change scenarios, CO2 fertilization effects and adaptation options. Therefore, more studies on the fields such as free air CO2 enrichment experiment and practical adaptations implemented need to be carried out
Resumo:
Results of extensive site reconnaissance on the Isles of Tiree, Coll and north-west Mull, Inner Hebrides are presented. Pollen-stratigraphic records were compiled from a profile from Glen Aros, north-west Mull and from two profiles on Coll located at Loch an t-Sagairt and Caolas an Eilean. Quantification of microscopic charcoal provided records that were used to facilitate a preliminary evaluation of the causal driving mechanisms of vegetation change. Bayesian modelling of radiocarbon dates was used to construct preliminary chronological frameworks for these records. Basal sedimentary deposits at Glen Aros contain pollen records that correspond with vegetation succession typical of the early Holocene dating to c. 11,370 cal BP. Woodland development is a key feature of the pollen records dating to the early Holocene, while records from Loch an t-Sagairt show that blanket mire communities were widespread in north-west Coll by c. 9800 cal BP. The Corylus-rise is dated to c. 10,710 cal BP at Glen Aros and c. 9905 cal BP at Loch an t-Sagairt, with records indicating extensive cover of hazel woodland with birch. All of the major arboreal taxa were recorded, though Quercus and Ulmus were nowhere widespread. Analysis of wood charcoal remains from a Mesolithic site at Fiskary Bay, Coll indicate that Salix and Populus are likely to be under-represented in the pollen records. Reconstructed isopoll maps appear to underplay the importance of alder in western Scotland during the mid-Holocene. Alder-rise expansions in microscopic charcoal dating to c. 7300 cal BP at Glen Aros and c. 6510 to 5830 cal BP on Coll provide records of significance to the issue of human-induced burning related to the expansion of alder in Britain. Increasing frequencies in microscopic charcoal are correlated with mid-Holocene records of increasing aridity in western Scotland after c. 7490 cal BP at Glen Aros, 6760 cal BP at Loch an t-Sagairt and 6590 cal BP at Caolas an Eilean, while several phases of increasing bog surface wetness were detected in the Loch an t-Sagairt archive during the Holocene. At least five phases of small-scale woodland disturbance during the Mesolithic period were identified in the Glen Aros profile dating to c. 11,650 cal BP, 9300 cal BP, 7840 cal BP, 7040 cal BP and 6100 cal BP. The timing of the third phase is coincident with evidence of Mesolithic settlement at Creit Dhu, north-west Mull. Three phases of small-scale woodland disturbance were detected at Loch an t-Sagairt dating to c. 9270 cal BP, 8770 cal BP and 8270 cal BP, all of which overlap chronologically with evidence of Mesolithic activity at Fiskary Bay, Coll. A number of these episodes are aligned chronologically with phases of Holocene climate variability such as the 8.2 K event.
Resumo:
Effective public policy to mitigate climate change footprints should build on data-driven analysis of firm-level strategies. This article’s conceptual approach augments the resource-based view (RBV) of the firm and identifies investments in four firm-level resource domains (Governance, Information management, Systems, and Technology [GISTe]) to develop capabilities in climate change impact mitigation. The authors denote the resulting framework as the GISTe model, which frames their analysis and public policy recommendations. This research uses the 2008 Carbon Disclosure Project (CDP) database, with high-quality information on firm-level climate change strategies for 552 companies from North America and Europe. In contrast to the widely accepted myth that European firms are performing better than North American ones, the authors find a different result. Many firms, whether European or North American, do not just “talk” about climate change impact mitigation, but actually do “walk the talk.” European firms appear to be better than their North American counterparts in “walk I,” denoting attention to governance, information management, and systems. But when it comes down to “walk II,” meaning actual Technology-related investments, North American firms’ performance is equal or superior to that of the European companies. The authors formulate public policy recommendations to accelerate firm-level, sector-level, and cluster-level implementation of climate change strategies.
Resumo:
The Arctic is an important region in the study of climate change, but monitoring surface temperatures in this region is challenging, particularly in areas covered by sea ice. Here in situ, satellite and reanalysis data were utilised to investigate whether global warming over recent decades could be better estimated by changing the way the Arctic is treated in calculating global mean temperature. The degree of difference arising from using five different techniques, based on existing temperature anomaly dataset techniques, to estimate Arctic SAT anomalies over land and sea ice were investigated using reanalysis data as a testbed. Techniques which interpolated anomalies were found to result in smaller errors than non-interpolating techniques. Kriging techniques provided the smallest errors in anomaly estimates. Similar accuracies were found for anomalies estimated from in situ meteorological station SAT records using a kriging technique. Whether additional data sources, which are not currently utilised in temperature anomaly datasets, would improve estimates of Arctic surface air temperature anomalies was investigated within the reanalysis testbed and using in situ data. For the reanalysis study, the additional input anomalies were reanalysis data sampled at certain supplementary data source locations over Arctic land and sea ice areas. For the in situ data study, the additional input anomalies over sea ice were surface temperature anomalies derived from the Advanced Very High Resolution Radiometer satellite instruments. The use of additional data sources, particularly those located in the Arctic Ocean over sea ice or on islands in sparsely observed regions, can lead to substantial improvements in the accuracy of estimated anomalies. Decreases in Root Mean Square Error can be up to 0.2K for Arctic-average anomalies and more than 1K for spatially resolved anomalies. Further improvements in accuracy may be accomplished through the use of other data sources.
Examining the relationships between Holocene climate change, hydrology, and human society in Ireland
Resumo:
This thesis explores human-environment interactions during the Mid-Late Holocene in raised bogs in central Ireland. The raised bogs of central Ireland are widely-recognised for their considerable palaeoenvironmental and archaeological resources: research over the past few decades has established the potential for such sites to preserve sensitive records of Holocene climatic variability expressed as changes in bog surface wetness (BSW); meanwhile archaeological investigations over the past century have uncovered hundreds of peatland archaeological features dating from the Neolithic through to the Post-Medieval period including wooden trackways, platforms, and deposits of high-status metalwork. Previous studies have attempted to explore the relationship between records of past environmental change and the occurrence of peatland archaeological sites reaching varying conclusions. More recently, environmentally-deterministic models of human-environment interaction in Irish raised bogs at the regional scale have been explicitly tested leading to the conclusion that there is no relationship between BSW and past human activity. These relationships are examined in more detail on a site-by-site basis in this thesis. To that end, testate amoebae-derived BSW records from nine milled former raised bogs in central Ireland were produced from sites with known and dated archaeological records. Relationships between BSW records and environmental conditions within the study area were explored through both the development of a new central Ireland testate amoebae transfer function and through comparisons between recent BSW records and instrumental weather data. Compilation of BSW records from the nine fossil study sites show evidence both for climate forcing, particularly during 3200-2400 cal BP, as well as considerable inter-site variability. Considerable inter-site variability was also evident in the archaeological records of the same sites. Whilst comparisons between BSW and archaeological records do not show a consistent linear relationship, examination of records on a site-by-site basis were shown to reveal interpretatively important contingent relationships. It is concluded therefore, that future research on human-environment interactions should focus on individual sites and should utilise theoretical approaches from the humanities in order to avoid the twin pitfalls of masking important local patterns of change, and of environmental determinism.
Resumo:
We present the global general circulation model IPSL-CM5 developed to study the long-term response of the climate system to natural and anthropogenic forcings as part of the 5th Phase of the Coupled Model Intercomparison Project (CMIP5). This model includes an interactive carbon cycle, a representation of tropospheric and stratospheric chemistry, and a comprehensive representation of aerosols. As it represents the principal dynamical, physical, and bio-geochemical processes relevant to the climate system, it may be referred to as an Earth System Model. However, the IPSL-CM5 model may be used in a multitude of configurations associated with different boundary conditions and with a range of complexities in terms of processes and interactions. This paper presents an overview of the different model components and explains how they were coupled and used to simulate historical climate changes over the past 150 years and different scenarios of future climate change. A single version of the IPSL-CM5 model (IPSL-CM5A-LR) was used to provide climate projections associated with different socio-economic scenarios, including the different Representative Concentration Pathways considered by CMIP5 and several scenarios from the Special Report on Emission Scenarios considered by CMIP3. Results suggest that the magnitude of global warming projections primarily depends on the socio-economic scenario considered, that there is potential for an aggressive mitigation policy to limit global warming to about two degrees, and that the behavior of some components of the climate system such as the Arctic sea ice and the Atlantic Meridional Overturning Circulation may change drastically by the end of the twenty-first century in the case of a no climate policy scenario. Although the magnitude of regional temperature and precipitation changes depends fairly linearly on the magnitude of the projected global warming (and thus on the scenario considered), the geographical pattern of these changes is strikingly similar for the different scenarios. The representation of atmospheric physical processes in the model is shown to strongly influence the simulated climate variability and both the magnitude and pattern of the projected climate changes.
Resumo:
This special issue is focused on the assessment of algorithms for the observation of Earth’s climate from environ- mental satellites. Climate data records derived by remote sensing are increasingly a key source of insight into the workings of and changes in Earth’s climate system. Producers of data sets must devote considerable effort and expertise to maximise the true climate signals in their products and minimise effects of data processing choices and changing sensors. A key choice is the selection of algorithm(s) for classification and/or retrieval of the climate variable. Within the European Space Agency Climate Change Initiative, science teams undertook systematic assessment of algorithms for a range of essential climate variables. The papers in the special issue report some of these exercises (for ocean colour, aerosol, ozone, greenhouse gases, clouds, soil moisture, sea surface temper- ature and glaciers). The contributions show that assessment exercises must be designed with care, considering issues such as the relative importance of different aspects of data quality (accuracy, precision, stability, sensitivity, coverage, etc.), the availability and degree of independence of validation data and the limitations of validation in characterising some important aspects of data (such as long-term stability or spatial coherence). As well as re- quiring a significant investment of expertise and effort, systematic comparisons are found to be highly valuable. They reveal the relative strengths and weaknesses of different algorithmic approaches under different observa- tional contexts, and help ensure that scientific conclusions drawn from climate data records are not influenced by observational artifacts, but are robust.
Resumo:
Precipitation over western Europe (WE) is projected to increase (decrease) roughly northward (equatorward) of 50°N during the 21st century. These changes are generally attributed to alterations in the regional large-scale circulation, e.g., jet stream, cyclone activity, and blocking frequencies. A novel weather typing within the sector (30°W–10°E, 25–70°N) is used for a more comprehensive dynamical interpretation of precipitation changes. A k-means clustering on daily mean sea level pressure was undertaken for ERA-Interim reanalysis (1979–2014). Eight weather types are identified: S1, S2, S3 (summertime types), W1, W2, W3 (wintertime types), B1, and B2 (blocking-like types). Their distinctive dynamical characteristics allow identifying the main large-scale precipitation-driving mechanisms. Simulations with 22 Coupled Model Intercomparison Project 5 models for recent climate conditions show biases in reproducing the observed seasonality of weather types. In particular, an overestimation of weather type frequencies associated with zonal airflow is identified. Considering projections following the (Representative Concentration Pathways) RCP8.5 scenario over 2071–2100, the frequencies of the three driest types (S1, B2, and W3) are projected to increase (mainly S1, +4%) in detriment of the rainiest types, particularly W1 (−3%). These changes explain most of the precipitation projections over WE. However, a weather type-independent background signal is identified (increase/decrease in precipitation over northern/southern WE), suggesting modifications in precipitation-generating processes and/or model inability to accurately simulate these processes. Despite these caveats in the precipitation scenarios for WE, which must be duly taken into account, our approach permits a better understanding of the projected trends for precipitation over WE.
A decision framework for considering climate change adaptation in biodiversity conservation planning
Resumo:
General principles of climate change adaptation for biodiversity have been formulated, but do not help prioritize actions. This is inhibiting their integration into conservation planning. We address this need with a decision framework that identifies and prioritizes actions to increase the adaptive capacity of species. The framework classifies species according to their current distribution and projected future climate space, as a basis for selecting appropriate decision trees. Decisions rely primarily on expert opinion, with additional information from quantitative models, where data are available. The framework considers in-situ management, followed by interventions at the landscape scale and finally translocation or ex-situ conservation. Synthesis and applications: From eight case studies, the key interventions identified for integrating climate change adaptation into conservation planning were local management and expansion of sites. We anticipate that, in combination with consideration of socio-economic and local factors, the decision framework will be a useful tool for conservation and natural resource managers to integrate adaptation measures into conservation plans.
Resumo:
Climate change poses new challenges to cities and new flexible forms of governance are required that are able to take into account the uncertainty and abruptness of changes. The purpose of this paper is to discuss adaptive climate change governance for urban resilience. This paper identifies and reviews three traditions of literature on the idea of transitions and transformations, and assesses to what extent the transitions encompass elements of adaptive governance. This paper uses the open source Urban Transitions Project database to assess how urban experiments take into account principles of adaptive governance. The results show that: the experiments give no explicit information of ecological knowledge; the leadership of cities is primarily from local authorities; and evidence of partnerships and anticipatory or planned adaptation is limited or absent. The analysis shows that neither technological, political nor ecological solutions alone are sufficient to further our understanding of the analytical aspects of transition thinking in urban climate governance. In conclusion, the paper argues that the future research agenda for urban climate governance needs to explore further the links between the three traditions in order to better identify contradictions, complementarities or compatibilities, and what this means in practice for creating and assessing urban experiments.
Resumo:
Climate change, a quintessential environmental problem, is generally recognised as the most important development challenge in the 21st century (IPCC, 2014). In addition to acknowledging its many significant direct consequences, climate change is increasingly used to frame discussions on other important global challenges, such as health, energy and food security. This chapter provides understanding of the intricate and complex relationship between climate change, environment and development.
Resumo:
This paper introduces the special issue of Climatic Change on the QUEST-GSI project, a global-scale multi-sectoral assessment of the impacts of climate change. The project used multiple climate models to characterise plausible climate futures with consistent baseline climate and socio-economic data and consistent assumptions, together with a suite of global-scale sectoral impacts models. It estimated impacts across sectors under specific SRES emissions scenarios, and also constructed functions relating impact to change in global mean surface temperature. This paper summarises the objectives of the project and its overall methodology, outlines how the project approach has been used in subsequent policy-relevant assessments of future climate change under different emissions futures, and summarises the general lessons learnt in the project about model validation and the presentation of multi-sector, multi-region impact assessments and their associated uncertainties to different audiences.