287 resultados para Urban entrepreneur
Resumo:
Recent urban air temperature increase is attributable to the climate change and heat island effects due to urbanization. This combined effects of urbanization and global warming can penetrate into the underground and elevate the subsurface temperature. In the present study, over-100 years measurements of subsurface temperature at a remote rural site were analysed, and an increasing rate of 0.17⁰C per decade at soil depth of 30cm due to climate change was identified in the UK, but the subsurface warming in an urban site showed a much higher rate of 0.85⁰C per decade at a 30cm depth and 1.18⁰C per decade at 100cm. The subsurface urban heat island (SUHI) intensity obtained at the paired urban-rural stations in London showed an unique 'U-shape', i.e. lowest in summer and highest during winter. The maximum SUHII is 3.5⁰C at 6:00 AM in December, and the minimum UHII is 0.2⁰C at 18:00PM in July. Finally, the effects of SUHI on the energy efficiency of the horizontal ground source heat pump (GSHP) were determined. Provided the same heat pump used, the installation at an urban site will maintain an overall higher COP compared with that at a rural site in all seasons, but the highest COP improvement can be achieved in winter.
Resumo:
Undeveloped land transactions at the urban fringe of the Melbourne metropolitan area in Australia are recorded in a dataset that enables exploration of the impact of its urban growth boundary (UGB) on residential land prices. Estimation can take account of a wide range of factors, while controlling for policy anticipation effects and other potential influences on land prices. Modelling estimates indicate that land prices rose substantially inside the UGB after its enactment in 2003, but did not rise much outside of it. These results suggest that the urban growth boundary has had a significant upward effect on the trajectory of the urban region’s house prices. Keywords: urban growth boundary, land prices, land market dynamics
Resumo:
Culex pipiens s.l. is one of the primary vectors of West Nile Virus in the USA and Continental Europe. The seasonal abundance and eco-behavioural characteristics of the typical form, Cx. pipiens pipiens, make it a key putative vector in Britain. Surveillance of Culex larvae and adults is essential to detect any changes to spatial and seasonal activity or morphological traits that may increase the risk of disease transmission. Here we report the use of the modified Reiter gravid box trap, which is commonly used in the USA but scarcely used in the UK, to assess its suitability as a tool for British female Culex mosquito surveillance. Trapping was carried out at 110 sites in urban and rural gardens in Berkshire in May, July and September 2013. We tested if reproductively active adult female Culex are more abundant in urban than rural gardens and if wing characteristic traits and egg raft size are influenced by location and seasonal variations. Gravid traps were highly selective for Culex mosquitoes, on average catching significantly more per trap in urban gardens (32.4 ± 6.2) than rural gardens (19.3 ± 4.0) and more in July than in May or September. The majority of females were caught alive in a good condition. Wing lengths were measured as an indicator of size. Females flying in September were significantly smaller than females in May or July. Further non-significant differences in morphology and fecundity between urban and rural populations were found that should be explored further across the seasons.
Resumo:
Countless cities are rapidly developing across the globe, pressing the need for clear urban planning and design recommendations geared towards sustainability. This article examines the intersections of Jane Jacobs’ four conditions for diversity with low-carbon and low-energy use urban systems in four cities around the world: Lyon (France), Chicago (United-States), Kolkata (India), and Singapore (Singapore). After reviewing Jacobs’ four conditions for diversity, we introduce the four cities and describe their historical development context. We then present a framework to study the cities along three dimensions: population and density, infrastructure development/use, and climate and landscape. These cities differ in many respects and their analysis is instructive for many other cities around the globe. Jacobs’ conditions are present in all of them, manifested in different ways and to varying degrees. Overall we find that the adoption of Jacobs' conditions seems to align well with concepts of low-carbon urban systems, with their focus on walkability, transit-oriented design, and more efficient land use (i.e., smaller unit sizes). Transportation sector emissions seems to demonstrate a stronger influence from the presence of Jacobs' conditions, while the link was less pronounced in the building sector. Kolkata, a low-income, developing world city, seems to possess many of Jacobs' conditions, while exhibiting low per capita emissions - maintaining both of these during its economic expansion will take careful consideration. Greenhouse gas mitigation, however, is inherently an in situ problem and the first task must therefore be to gain local knowledge of an area before developing strategies to lower its carbon footprint.
Resumo:
Cities and urban regions are undertaking efforts to quantify greenhouse (GHG) emissions from their jurisdictional boundaries. Although inventorying methodologies are beginning to standardize for GHG sources, carbon sequestration is generally not quantified. This article describes the methodology and quantification of gross urban carbon sinks. Sinks are categorized into direct and embodied sinks. Direct sinks generally incorporate natural process, such as humification in soils and photosynthetic biomass growth (in urban trees, perennial crops, and regional forests). Embodied sinks include activities associated with consumptive behavior that result in the import and/or storage of carbon, such as landfilling of waste, concrete construction, and utilization of durable wood products. Using methodologies based on the Intergovernmental Panel on Climate Change 2006 guidelines (for direct sinks) and peer-reviewed literature (for embodied sinks), carbon sequestration for 2005 is calculated for the Greater Toronto Area. Direct sinks are found to be 317 kilotons of carbon (kt C), and are dominated by regional forest biomass. Embodied sinks are calculated to be 234 kt C based on one year's consumption, though a complete life cycle accounting of emissions would likely transform this sum from a carbon sink to a source. There is considerable uncertainty associated with the methodologies used, which could be addressed with city-specific stock-change measurements. Further options for enhancing carbon sink capacity within urban environments are explored, such as urban biomass growth and carbon capture and storage.
Resumo:
Holm oak (Quercus ilex), a widespread urban street tree in the Mediterranean region, is widely used as biomonitor of persistent atmospheric pollutants, especially particulate-bound metals. By using lab- and field-based experimental approaches, we compared the leaf-level capacity for particles’ capture and retention between Q. ilex and other common Mediterranean urban trees: Quercus cerris, Platanus × hispanica, Tilia cordata and Olea europaea. All applied methods were effective in quantifying particulate capture and retention, although not univocal in ranking species performances. Distinctive morphological features of leaves led to differences in species’ ability to trap and retain particles of different size classes and to accumulate metals after exposure to traffic in an urban street. Overall, P. × hispanica and T. cordata showed the largest capture potential per unit leaf area for most model particles (Na+ and powder particles), and street-level Cu and Pb, while Q. ilex acted intermediately. After wash-off experiments, P. × hispanica leaves had the greatest retention capacity among the tested species and O. europaea the lowest. We concluded that the Platanus planting could be considered in Mediterranean urban environments due to its efficiency in accumulating and retaining airborne particulates; however, with atmospheric pollution being typically higher in winter, the evergreen Q. ilex represents a better year-round choice to mitigate the impact of airborne particulate pollutants.
Resumo:
This book follows a revolutionary trend popular among young activists and would-be radicals after 1917, the formation of collective units of cohabitation and association known as 'urban communes'. In these spaces, activists tried to live what they understood as the 'socialist lifestyle', self-consciously putting Marxist and Bolshevik theories into practice. By telling the story of the urban communes, this book reveals how grand revolutionary ideals, such as collectivism, equality, proletarian ethics, and modern practice, were experienced, understood, and appropriated on a human level. This enables us to better understand the messy realities of the early Soviet state, showing how ideological beliefs and revolutionary contingencies actually came into being during this time.
Resumo:
This chapter charts the rise the urban commune as a cultural construct in early Soviet Russia and, in so doing, explores the implication of assessing the spaces in-between the apparatus of state -- very much a new venture in Soviet history.
Resumo:
This article reviews the shortcomings of the current UK planning system to address urban inequalities and segregation of impoverished communities.
Resumo:
The urban boundary layer, above the canopy, is still poorly understood. One of the challenges is obtaining data by sampling more than a few meters above the rooftops, given the spatial and temporal inhomogeneities in both horizontal and vertical. Sodars are generally useful tools for ground-based remote sensing of winds and turbulence, but rely on horizontal homogeneity (as do lidars) in building up 3-component wind vectors from sampling three or more spatially separated volumes. The time taken for sound to travel to a typical range of 200 m and back is also a limitation. A sodar of radically different design is investigated, aimed at addressing these problems. It has a single vertical transmitted sound pulse. Doppler shifted signals are received from a number of volumes around the periphery of the transmitted beam with microphones which each having tight angular sensitivity at zenith angles slightly off-vertical. The spatial spread of sampled volumes is therefore smaller. By having more receiver microphones than a conventional sodar, the effect of smaller zenith angle is offset. More rapid profiling is also possible with a single vertical transmitted beam, instead of the usual multiple beams.A prototype design is described, together with initial field measurements. It is found that the beam forming using a single dish antenna and the drift of the sound pulse downwind both give rise to reduced performance compared with expectations. It is concluded that, while the new sodar works in principle, the compromises arising in the design mean that the expected advantages have not been realized
Resumo:
Eddy covariance has been used in urban areas to evaluate the net exchange of CO2 between the surface and the atmosphere. Typically, only the vertical flux is measured at a height 2–3 times that of the local roughness elements; however, under conditions of relatively low instability, CO2 may accumulate in the airspace below the measurement height. This can result in inaccurate emissions estimates if the accumulated CO2 drains away or is flushed upwards during thermal expansion of the boundary layer. Some studies apply a single height storage correction; however, this requires the assumption that the response of the CO2 concentration profile to forcing is constant with height. Here a full seasonal cycle (7th June 2012 to 3rd June 2013) of single height CO2 storage data calculated from concentrations measured at 10 Hz by open path gas analyser are compared to a data set calculated from a concurrent switched vertical profile measured (2 Hz, closed path gas analyser) at 10 heights within and above a street canyon in central London. The assumption required for the former storage determination is shown to be invalid. For approximately regular street canyons at least one other measurement is required. Continuous measurements at fewer locations are shown to be preferable to a spatially dense, switched profile, as temporal interpolation is ineffective. The majority of the spectral energy of the CO2 storage time series was found to be between 0.001 and 0.2 Hz (500 and 5 s respectively); however, sampling frequencies of 2 Hz and below still result in significantly lower CO2 storage values. An empirical method of correcting CO2 storage values from under-sampled time series is proposed.
Resumo:
Long term meteorological records (> 100 years) from stations associated with villages are generally classified as rural and assumed to have no urban influence. Using networks installed in two European villages, the local and microclimatic variations around two of these rural-village sites are examined. An annual average temperature difference ($\Delta{T}$) of 0.6 and 0.4 K was observed between the built-up village area and the current meteorological station in Geisenheim (Germany) and Haparanda (Sweden), respectively. Considerably larger values were recorded for the minimum temperatures and during summer. The spatial variations in temperature within the villages are of the same order as recorded over the past 100+ years in these villages (0.06 to 0.17 K/10 years). This suggests that the potential biases in the long records of rural-villages also warrant careful consideration like those of the more commonly studied large urban areas effects.
Resumo:
Results from the first international urban model comparison experiment (PILPS-Urban) suggested that models which neglected the anthropogenic heat flux within the surface energy balance performed at least as well as models that include the source term, but this could not be explained. The analyses undertaken show that the results from PILPS-Urban were masked by the signal from including vegetation, which was identified in PILPS-Urban as being important. Including the anthropogenic heat flux does give improved performance, but the benefit is small for the site studied given the relatively small magnitude of this flux relative to other terms in the surface energy balance. However, there is no further benefit from including temporal variations in the flux at this site. The importance is expected to increase at sites with a larger anthropogenic heat flux and greater temporal variations.