257 resultados para Rainfall simulation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sahelian summer rainfall, controlled by the West African monsoon, exhibited large-amplitude multidecadal variability during the twentieth century. Particularly important was the severe drought of the 1970s and 1980s, which had widespread impacts1–6. Research into the causes of this drought has identified anthropogenic aerosol forcing3,4,7 and changes in sea surface temperatures (SSTs; refs 1,2,6,8–11) as the most important drivers. Since the 1980s, there has been some recovery of Sahel rainfall amounts2–6,11–14, although not to the pre-drought levels of the 1940s and 1950s. Here we report on experiments with the atmospheric component of a state-of-the-art global climate model to identify the causes of this recovery. Our results suggest that the direct influence of higher levels of greenhouse gases in the atmosphere was the main cause, with an additional role for changes in anthropogenic aerosol precursor emissions. We find that recent changes in SSTs, although substantial, did not have a significant impact on the recovery. The simulated response to anthropogenic greenhouse-gas and aerosol forcing is consistent with a multivariate fingerprint of the observed recovery, raising confidence in our findings. Although robust predictions are not yet possible, our results suggest that the recent recovery in Sahel rainfall amounts is most likely to be sustained or amplified in the near term.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on the geological evidence that the northern Tibetan Plateau (NTP) had an uplift of a finite magnitude since the Miocene and the major Asian inland deserts formed in the early Pliocene, a regional climate model (RegCM4.1) with a horizontal resolution of 50 km was used to explore the effects of the NTP uplift and the related aridification of inland Asia on regional climate. We designed three numerical experiments including the control experiment representing the present-day condition, the high-mountain experiment representing the early Pliocene condition with uplifted NTP but absence of the Asian inland deserts, and the low-mountain experiment representing the mid-Miocene condition with reduced topography in the NTP (by as much as 2400 m) and also absence of the deserts. Our simulation results indicated that the NTP uplift caused significant reductions in annual precipitation in a broad region of inland Asia north of the Tibetan Plateau (TP) mainly due to the enhanced rain shadow effect of the mountains and changes in the regional circulations. However, four mountainous regions located in the uplift showed significant increases in precipitation, stretching from the Pamir Plateau in the west to the Qilian Mountains in the east. These mountainous areas also experienced different changes in the rainfall seasonality with the greatest increases occurring during the respective rainy seasons, predominantly resulted from the enhanced orographically forced upwind ascents. The appearance of the major deserts in the inland Asia further reduced precipitation in the region and led to increased dust emission and deposition fluxes, while the spatial patterns of dust deposition were also changed, not only in the regions of uplift-impacted topography, but also in the downwind regions. One major contribution from this study is the comparison of the simulation results with 11 existing geological records representing the moisture conditions from Miocene to Pliocene. The comparisons revealed good matches between the simulation results and the published geological records. Therefore, we conclude that the NTP uplift and the related formation of the major deserts played a controlling role in the evolution of regional climatic conditions in a broad region in inland Asia since the Miocene.