279 resultados para MERIDIONAL OVERTURNING CIRCULATION
Resumo:
This study examines the atmospheric circulation patterns and surface features associated with the seven coldest winters in the U.K. since 1870, using the 20th Century Reanalysis. Six of these winters are outside the scope of previous reanalysis datasets; we examine them here for the first time. All winters show a marked lack of the climatological southwesterly flow over the UK, displaying easterly and northeasterly anomalies. Six of the seven winters (all except 1890) were associated with a negative phase of the North Atlantic Oscillation; 1890 was characterised by a blocking anticyclone over and northeast of the UK.
Resumo:
Numerical simulations are performed to assess the influence of the large-scale circulation on the transition from suppressed to active convection. As a model tool, we used a coupled-column model. It consists of two cloud-resolving models which are fully coupled via a large-scale circulation which is derived from the requirement that the instantaneous domain-mean potential temperature profiles of the two columns remain close to each other. This is known as the weak-temperature gradient approach. The simulations of the transition are initialized from coupled-column simulations over non-uniform surface forcing and the transition is forced within the dry column by changing the local and/or remote surface forcings to uniform surface forcing across the columns. As the strength of the circulation is reduced to zero, moisture is recharged into the dry column and a transition to active convection occurs once the column is sufficiently moistened to sustain deep convection. Direct effects of changing surface forcing occur over the first few days only. Afterward, it is the evolution of the large-scale circulation which systematically modulates the transition. Its contributions are approximately equally divided between the heating and moistening effects. A transition time is defined to summarize the evolution from suppressed to active convection. It is the time when the rain rate within the dry column is halfway to the mean value obtained at equilibrium over uniform surface forcing. The transition time is around twice as long for a transition that is forced remotely compared to a transition that is forced locally. Simulations in which both local and remote surface forcings are changed produce intermediate transition times.
Resumo:
The theory of wave–mean flow interaction requires a partition of the atmospheric flow into a notional background state and perturbations to it. Here, a background state, known as the Modified Lagrangian Mean (MLM), is defined as the zonally symmetric state obtained by requiring that every potential vorticity (PV) contour lying within an isentropic layer encloses the same mass and circulation as in the full flow. For adiabatic and frictionless flow, these two integral properties are time-invariant and the MLM state is a steady solution of the primitive equations. The time dependence in the adiabatic flow is put into the perturbations, which can be described by a wave-activity conservation law that is exact even at large amplitude. Furthermore, the effects of non-conservative processes on wave activity can be calculated from the conservation law. A new method to calculate the MLM state is introduced, where the position of the lower boundary is obtained as part of the solution. The results are illustrated using Northern Hemisphere ERA-Interim data. The MLM state evolves slowly, implying that the net non-conservative effects are weak. Although ‘adiabatic eddy fluxes’ cannot affect the MLM state, the effects of Rossby-wave breaking, PV filamentation and subsequent dissipation result in sharpening of the polar vortex edge and meridional shifts in the MLM zonal flow, both at tropopause level and on the winter stratospheric vortex. The rate of downward migration of wave activity during stratospheric sudden warmings is shown to be given by the vertical scale associated with polar vortex tilt divided by the time-scale for wave dissipation estimated from the wave-activity conservation law. Aspects of troposphere–stratosphere interaction are discussed. The new framework is suitable to examine the climate and its interactions with disturbances, such as midlatitude storm tracks, and makes a clean partition between adiabatic and non-conservative processes.
Resumo:
Fundamental puzzles of climate science remain unsolved because of our limited understanding of how clouds, circulation and climate interact. One example is our inability to provide robust assessments of future global and regional climate changes. However, ongoing advances in our capacity to observe, simulate and conceptualize the climate system now make it possible to fill gaps in our knowledge. We argue that progress can be accelerated by focusing research on a handful of important scientific questions that have become tractable as a result of recent advances. We propose four such questions below; they involve understanding the role of cloud feedbacks and convective organization in climate, and the factors that control the position, the strength and the variability of the tropical rain belts and the extratropical storm tracks.
Resumo:
Conservation of water demands that meridional ocean and atmosphere freshwater transports (FWT) are of equal magnitude but opposite in direction. This suggests that the atmospheric FWT and its associated latent heat (LH) transport could be thought of as a \textquotedblleft coupled ocean/atmosphere mode\textquotedblright. But what is the true nature of this coupling? Is the ocean passive or active? Here we analyze a series of simulations with a coupled ocean-atmosphere-sea ice model employing highly idealized geometries but with markedly different coupled climates and patterns of ocean circulation. Exploiting streamfunctions in specific humidity coordinates for the atmosphere and salt coordinates for the ocean to represent FWT in their respective medium, we find that atmospheric FWT/LH transport is essentially independent of the ocean state. Ocean circulation and salinity distribution adjust to achieve a return freshwater pathway demanded of them by the atmosphere. So, although ocean and atmosphere FWTs are indeed coupled by mass conservation, the ocean is a passive component acting as a reservoir of freshwater.
Resumo:
It has been well documented that there is an anticyclonic anomaly over the western North Pacific (WNPAC, hereafter) during El Niño decaying summer. This El Niño-WNPAC relationship is greatly useful for the seasonal prediction of summer climate in the WNP and East Asia. In this study, we investigate the modification of the El Niño-WNPAC relationship induced by a weakened Atlantic thermohaline circulation (THC) in a water-hosing experiment. The results suggest that the WNPAC during the El Niño decaying summer, as well as the associated precipitation anomaly over the WNP, is intensified under the weakened THC. On the one hand, this intensification is in response to the increased amplitude and frequency of El Niño events in the water-hosing experiment. On the other hand, this intensification is also because of greater climatological humidity over the western to central North Pacific under the weakened THC. We suggest that the increase of climatological humidity over the western to central North Pacific during summer under the weakened THC is favorable for enhanced interannual variability of precipitation, and therefore favorable for the intensification of the WNPAC during El Niño decaying summer. This study suggests a possible modulation of the El Niño–Southern Oscillation-WNP summer monsoon relationship by the low-frequency fluctuation of Atlantic sea surface temperature. The results offer an explanation for the observed modification of the multidecadal fluctuation of El Niño-WNPAC relationship by the Atlantic multidecadal oscillation.
Resumo:
The tropical North Atlantic (TNA) sea surface temperature (SST) has been identified as one of regulators on the boreal summer climate over the western North Pacific (WNP), in addition to SSTs in the tropical Pacific and Indian Oceans. The major physical process proposed is that the TNA warming induces a pair of cyclonic circulation anomaly over the eastern Pacific and negative precipitation anomalies over the eastern to central tropical Pacific, which in turn lead to an anticyclonic circulation anomaly over the western to central North Pacific. This study further demonstrates that the modulation of the TNA warming to the WNP summer climate anomaly tends to be intensified under background of the weakened Atlantic thermohaline circulation (THC) by using a water-hosing experiment. The results suggest that the weakened THC induces a decrease in thermocline depth over the TNA region, resulting in the enhanced sensitivity of SST variability to wind anomalies and thus intensification of the interannual variation of TNA SST. Under the weakened THC, the atmospheric responses to the TNA warming are westward shifted, enhancing the anticyclonic circulation and negative precipitation anomaly over the WNP. This study supports the recent finding that the negative phase of the Atlantic multidecadal oscillation after the late 1960s has been favourable for the strengthening of the connection between TNA SST variability and WNP summer climate and has important implications for seasonal prediction and future projection of the WNP summer climate.
Resumo:
It has been suggested that the Sun may evolve into a period of lower activity over the 21st century. This study examines the potential climate impacts of the onset of an extreme ‘Maunder Minimum like’ grand solar minimum using a comprehensive global climate model. Over the second half of the 21st century, the scenario assumes a decrease in total solar irradiance of 0.12% compared to a reference RCP8.5 experiment. The decrease in solar irradiance cools the stratopause (~1 hPa) in the annual and global mean by 1.4 K. The impact on global mean near-surface temperature is small (~−0.1 K), but larger changes in regional climate occur during the stratospheric dynamically active seasons. In Northern hemisphere (NH) winter-time, there is a weakening of the stratospheric westerly jet by up to ~3-4 m s1, with the largest changes occurring in January-February. This is accompanied by a deepening of the Aleutian low at the surface and an increase in blocking over northern Europe and the north Pacific. There is also an equatorward shift in the Southern hemisphere (SH) midlatitude eddy-driven jet in austral spring. The occurrence of an amplified regional response during winter and spring suggests a contribution from a top-down pathway for solar-climate coupling; this is tested using an experiment in which ultraviolet (200–320 nm) radiation is decreased in isolation of other changes. The results show that a large decline in solar activity over the 21st century could have important impacts on the stratosphere and regional surface climate.
Resumo:
Aeolian dust modelling has improved significantly over the last ten years and many institutions now consistently model dust uplift, transport and deposition in general circulation models (GCMs). However, the representation of dust in GCMs is highly variable between modelling communities due to differences in the uplift schemes employed and the representation of the global circulation that subsequently leads to dust deflation. In this study two different uplift schemes are incorporated in the same GCM. This approach enables a clearer comparison of the dust uplift schemes themselves, without the added complexity of several different transport and deposition models. The global annual mean dust aerosol optical depths (at 550 nm) using two different dust uplift schemes were found to be 0.014 and 0.023—both lying within the estimates from the AeroCom project. However, the models also have appreciably different representations of the dust size distribution adjacent to the West African coast and very different deposition at various sites throughout the globe. The different dust uplift schemes were also capable of influencing the modelled circulation, surface air temperature, and precipitation despite the use of prescribed sea surface temperatures. This has important implications for the use of dust models in AMIP-style (Atmospheric Modelling Intercomparison Project) simulations and Earth-system modelling.
Resumo:
Climate models indicate a future wintertime precipitation reduction in the Mediterranean region but there is large uncertainty in the amplitude of the projected change. We analyse CMIP5 climate model output to quantify the role of atmospheric circulation in the Mediterranean precipitation change. It is found that a simple circulation index, i.e. the 850 hPa zonal wind (U850) in North Africa, well describes the year to year fluctuations in the area-averaged Mediterranean precipitation, with positive (i.e. westerly) U850 anomalies in North Africa being associated with positive precipitation anomalies. Under climate change, U850 in North Africa and the Mediterranean precipitation are both projected to decrease consistently with the relationship found in the inter-annual variability. This enables us to estimate that about 85% of the CMIP5 mean precipitation response and 80% of the variance in the inter-model spread are related to changes in the atmospheric circulation. In contrast, there is no significant correlation between the mean precipitation response and the global-mean surface warming across the models. It follows that the uncertainty in cold-season Mediterranean precipitation projection will not be narrowed unless the uncertainty in the atmospheric circulation response is reduced.
Resumo:
As part of an international intercomparison project, a set of single column models (SCMs) and cloud-resolving models (CRMs) are run under the weak temperature gradient (WTG) method and the damped gravity wave (DGW) method. For each model, the implementation of the WTG or DGW method involves a simulated column which is coupled to a reference state defined with profiles obtained from the same model in radiative-convective equilibrium. The simulated column has the same surface conditions as the reference state and is initialized with profiles from the reference state. We performed systematic comparison of the behavior of different models under a consistent implementation of the WTG method and the DGW method and systematic comparison of the WTG and DGW methods in models with different physics and numerics. CRMs and SCMs produce a variety of behaviors under both WTG and DGW methods. Some of the models reproduce the reference state while others sustain a large-scale circulation which results in either substantially lower or higher precipitation compared to the value of the reference state. CRMs show a fairly linear relationship between precipitation and circulation strength. SCMs display a wider range of behaviors than CRMs. Some SCMs under the WTG method produce zero precipitation. Within an individual SCM, a DGW simulation and a corresponding WTG simulation can produce different signed circulation. When initialized with a dry troposphere, DGW simulations always result in a precipitating equilibrium state. The greatest sensitivities to the initial moisture conditions occur for multiple stable equilibria in some WTG simulations, corresponding to either a dry equilibrium state when initialized as dry or a precipitating equilibrium state when initialized as moist. Multiple equilibria are seen in more WTG simulations for higher SST. In some models, the existence of multiple equilibria is sensitive to some parameters in the WTG calculations.
Resumo:
We review the effects of dynamical variability on clouds and radiation in observations and models and discuss their implications for cloud feedbacks. Jet shifts produce robust meridional dipoles in upper-level clouds and longwave cloud-radiative effect (CRE), but low-level clouds, which do not simply shift with the jet, dominate the shortwave CRE. Because the effect of jet variability on CRE is relatively small, future poleward jet shifts with global warming are only a second-order contribution to the total CRE changes around the midlatitudes, suggesting a dominant role for thermodynamic effects. This implies that constraining the dynamical response is unlikely to reduce the uncertainty in extratropical cloud feedback. However, we argue that uncertainty in the cloud-radiative response does affect the atmospheric circulation response to global warming, by modulating patterns of diabatic forcing. How cloud feedbacks can affect the dynamical response to global warming is an important topic of future research.
Resumo:
We review the effects of dynamical variability on clouds and radiation in observations and models and discuss their implications for cloud feedbacks. Jet shifts produce robust meridional dipoles in upper-level clouds and longwave cloud-radiative effect (CRE), but low-level clouds, which do not simply shift with the jet, dominate the shortwave CRE. Because the effect of jet variability on CRE is relatively small, future poleward jet shifts with global warming are only a second-order contribution to the total CRE changes around the midlatitudes, suggesting a dominant role for thermodynamic effects. This implies that constraining the dynamical response is unlikely to reduce the uncertainty in extratropical cloud feedback. However, we argue that uncertainty in the cloud-radiative response does affect the atmospheric circulation response to global warming, by modulating patterns of diabatic forcing. How cloud feedbacks can affect the dynamical response to global warming is an important topic of future research.