267 resultados para Housing forecasting
Resumo:
Floods are the most frequent of natural disasters, affecting millions of people across the globe every year. The anticipation and forecasting of floods at the global scale is crucial to preparing for severe events and providing early awareness where local flood models and warning services may not exist. As numerical weather prediction models continue to improve, operational centres are increasingly using the meteorological output from these to drive hydrological models, creating hydrometeorological systems capable of forecasting river flow and flood events at much longer lead times than has previously been possible. Furthermore, developments in, for example, modelling capabilities, data and resources in recent years have made it possible to produce global scale flood forecasting systems. In this paper, the current state of operational large scale flood forecasting is discussed, including probabilistic forecasting of floods using ensemble prediction systems. Six state-of-the-art operational large scale flood forecasting systems are reviewed, describing similarities and differences in their approaches to forecasting floods at the global and continental scale. Currently, operational systems have the capability to produce coarse-scale discharge forecasts in the medium-range and disseminate forecasts and, in some cases, early warning products, in real time across the globe, in support of national forecasting capabilities. With improvements in seasonal weather forecasting, future advances may include more seamless hydrological forecasting at the global scale, alongside a move towards multi-model forecasts and grand ensemble techniques, responding to the requirement of developing multi-hazard early warning systems for disaster risk reduction.
Resumo:
During the eruption of Eyjafjallajökull in April and May 2010, the London Volcanic Ash Advisory Centre demonstrated the importance of infrared (IR) satellite imagery for monitoring volcanic ash and validating the Met Office operational model, NAME. This model is used to forecast ash dispersion and forms much of the basis of the advice given to civil aviation. NAME requires a source term describing the properties of the eruption plume at the volcanic source. Elements of the source term are often highly uncertain and significant effort has therefore been invested into the use of satellite observations of ash clouds to constrain them. This paper presents a data insertion method, where satellite observations of downwind ash clouds are used to create effective ‘virtual sources’ far from the vent. Uncertainty in the model output is known to increase over the duration of a model run, as inaccuracies in the source term, meteorological data and the parameterizations of the modelled processes accumulate. This new technique, where the dispersion model (DM) is ‘reinitialized’ part-way through a run, could go some way to addressing this.
Resumo:
Purpose – The purpose of this paper is to explore the role of the housing market in the monetary policy transmission to consumption among euro area member states. It has been argued that the housing market in one country is then important when its mortgage market is well developed. The countries in the euro area follow unitary monetary policy, however, their housing and mortgage markets show some heterogeneity, which may lead to different policy effects on aggregate consumption through the housing market. Design/methodology/approach – The housing market can act as a channel of monetary policy shocks to household consumption through changes in house prices and residential investment – the housing market channel. We estimate vector autoregressive models for each country and conduct a counterfactual analysis in order to disentangle the housing market channel and assess its importance across the euro area member states. Findings – We find little evidence for heterogeneity of the monetary policy transmission through house prices across the euro area countries. Housing market variations in the euro area seem to be better captured by changes in residential investment rather than by changes in house prices. As a result we do not find significantly large house price channels. For some of the countries however, we observe a monetary policy channel through residential investment. The existence of a housing channel may depend on institutional features of both the labour market or with institutional factors capturing the degree of household debt as is the LTV ratio. Originality/value – The study contributes to the existing literature by assessing whether a unitary monetary policy has a different impact on consumption across the euro area countries through their housing and mortgage markets. We disentangle monetary-policy-induced effects on consumption associated with variations on the housing markets due to either house price variations or residential investment changes. We show that the housing market can play a role in the monetary transmission mechanism even in countries with less developed mortgage markets through variations in residential investment.
Resumo:
European housing markets exhibited considerable volatility so far in the 21st century while affordability worsened for many. Boom-bust has had greater housing impacts than any specific housing policy, which illustrates the difficulty in policy terms of seeing housing in isolation and the central significance of interlinked relationships between housing, the economy and financial markets. Europe historically invented a powerful set of interventionist tools to alter housing circumstances but, as the overview of rental markets here indicates, today they have mixed success. Examples of what to avoid in policy are at least as common as exemplars.
Resumo:
On 23 November 1981, a strong cold front swept across the U.K., producing tornadoes from the west to the east coasts. An extensive campaign to collect tornado reports by the Tornado and Storm Research Organisation (TORRO) resulted in 104 reports, the largest U.K. outbreak. The front was simulated with a convection-permitting numerical model down to 200-m horizontal grid spacing to better understand its evolution and meteorological environment. The event was typical of tornadoes in the U.K., with convective available potential energy (CAPE) less than 150 J kg-1, 0-1-km wind shear of 10-20 m s-1, and a narrow cold-frontal rainband forming precipitation cores and gaps. A line of cyclonic absolute vorticity existed along the front, with maxima as large as 0.04 s-1. Some hook-shaped misovortices bore kinematic similarity to supercells. The narrow swath along which the line was tornadic was bounded on the equatorward side by weak vorticity along the line and on the poleward side by zero CAPE, enclosing a region where the environment was otherwise favorable for tornadogenesis. To determine if the 104 tornado reports were plausible, first possible duplicate reports were eliminated, resulting in as few as 58 tornadoes to as many as 90. Second, the number of possible parent misovortices that may have spawned tornadoes is estimated from model output. The number of plausible tornado reports in the 200-m grid-spacing domain was 22 and as many as 44, whereas the model simulation was used to estimate 30 possible parent misovortices within this domain. These results suggest that 90 reports was plausible.
Resumo:
This introduction to the Virtual Special Issue surveys the development of spatial housing economics from its roots in neo-classical theory, through more recent developments in social interactions modelling, and touching on the role of institutions, path dependence and economic history. The survey also points to some of the more promising future directions for the subject that are beginning to appear in the literature. The survey covers elements hedonic models, spatial econometrics, neighbourhood models, housing market areas, housing supply, models of segregation, migration, housing tenure, sub-national house price modelling including the so-called ripple effect, and agent-based models. Possible future directions are set in the context of a selection of recent papers that have appeared in Urban Studies. Nevertheless, there are still important gaps in the literature that merit further attention, arising at least partly from emerging policy problems. These include more research on housing and biodiversity, the relationship between housing and civil unrest, the effects of changing age distributions - notably housing for the elderly - and the impact of different international institutional structures. Methodologically, developments in Big Data provide an exciting framework for future work.
Resumo:
Housing Associations (HAs) contribute circa 20% of the UK’s housing supply. HAs are however under increasing pressure as a result of funding cuts and rent reductions. Due to the increased pressure, a number of processes are currently being reviewed by HAs, especially how they manage and learn from defects. Learning from defects is considered a useful approach to achieving defect reduction within the UK housebuilding industry. This paper contributes to our understanding of how HAs learn from defects by undertaking an initial round table discussion with key HA stakeholders as part of an ongoing collaborative research project with the National House Building Council (NHBC) to better understand how house builders and HAs learn from defects to reduce their prevalence. The initial discussion shows that defect information runs through a number of groups, both internal and external of a HA during both the defects management process and organizational learning (OL) process. Furthermore, HAs are reliant on capturing and recording defect data as the foundation for the OL process. During the OL process defect data analysis is the primary enabler to recognizing a need for a change to organizational routines. When a need for change has been recognized, new options are typically pursued to design out defects via updates to a HAs Employer’s Requirements. Proposed solutions are selected by a review board and committed to organizational routine. After implementing a change, both structured and unstructured feedback is sought to establish the change’s success. The findings from the HA discussion demonstrates that OL can achieve defect reduction within the house building sector in the UK. The paper concludes by outlining a potential ‘learning from defects model’ for the housebuilding industry as well as describing future work.
Resumo:
Rapid growth in the production of new homes in the UK is putting build quality under pressure as evidenced by an increase in the number of defects. Housing associations (HAs) contribute approximately 20% of the UK’s new housing supply. HAs are currently experiencing central government funding cuts and rental revenue reductions. As part of HAs’ quest to ramp up supply despite tight budget conditions, they are reviewing how they learn from defects. Learning from defects is argued as a means of reducing the persistent defect problem within the UK housebuilding industry, yet how HAs learn from defects is under-researched. The aim of this research is to better understand how HAs, in practice, learn from past defects to reduce the prevalence of defects in future new homes. The theoretical lens for this research is organizational learning. The results drawn from 12 HA case studies indicate that effective organizational learning has the potential to reduce defects within the housing sector. The results further identify that HAs are restricting their learning to focus primarily on reducing defects through product and system adaptations. Focusing on product and system adaptations alone suppresses HAs’ abilities to reduce defects in the future.
Resumo:
Existing theoretical models of house prices and credit rely on continuous rationality of consumers, an assumption that has been frequently questioned in recent years. Meanwhile, empirical investigations of the relationship between prices and credit are often based on national-level data, which is then tested for structural breaks and asymmetric responses, usually with subsamples. Earlier author argues that local markets are structurally different from one another and so the coefficients of any estimated housing market model should vary from region to region. We investigate differences in the price–credit relationship for 12 regions of the UK. Markov-switching is introduced to capture asymmetric market behaviours and turning points. Results show that credit abundance had a large impact on house prices in Greater London and nearby regions alongside a strong positive feedback effect from past house price movements. This impact is even larger in Greater London and the South East of England when house prices are falling, which are the only instances where the credit effect is more prominent than the positive feedback effect. A strong positive feedback effect from past lending activity is also present in the loan dynamics. Furthermore, bubble probabilities extracted using a discrete Kalman filter neatly capture market turning points.
Resumo:
The Plant–Craig stochastic convection parameterization (version 2.0) is implemented in the Met Office Regional Ensemble Prediction System (MOGREPS-R) and is assessed in comparison with the standard convection scheme with a simple stochastic scheme only, from random parameter variation. A set of 34 ensemble forecasts, each with 24 members, is considered, over the month of July 2009. Deterministic and probabilistic measures of the precipitation forecasts are assessed. The Plant–Craig parameterization is found to improve probabilistic forecast measures, particularly the results for lower precipitation thresholds. The impact on deterministic forecasts at the grid scale is neutral, although the Plant–Craig scheme does deliver improvements when forecasts are made over larger areas. The improvements found are greater in conditions of relatively weak synoptic forcing, for which convective precipitation is likely to be less predictable.