349 resultados para CLIMATE-CHANGE
Resumo:
This paper compares the effects of two indicative climate mitigation policies on river flows in six catchments in the UK with two scenarios representing un-mitigated emissions. It considers the consequences of uncertainty in both the pattern of catchment climate change as represented by different climate models and hydrological model parameterisation on the effects of mitigation policy. Mitigation policy has little effect on estimated flow magnitudes in 2030. By 2050 a mitigation policy which achieves a 2oC temperature rise target reduces impacts on low flows by 20-25% compared to a business-as-usual emissions scenario which increases temperatures by 4oC by the end of the 21st century, but this is small compared to the range in impacts between different climate model scenarios. However, the analysis also demonstrates that an early peak in emissions would reduce impacts by 40-60% by 2080 (compared with the 4oC pathway), easing the adaptation challenge over the long term, and can delay by several decades the impacts that would be experienced from around 2050 in the absence of policy. The estimated proportion of impacts avoided varies between climate model patterns and, to a lesser extent, hydrological model parameterisations, due to variations in the projected shape of the relationship between climate forcing and hydrological response.
Resumo:
A holistic perspective on changing rainfall-driven flood risk is provided for the late 20th and early 21st centuries. Economic losses from floods have greatly increased, principally driven by the expanding exposure of assets at risk. It has not been possible to attribute rain-generated peak streamflow trends to anthropogenic climate change over the past several decades. Projected increases in the frequency and intensity of heavy rainfall, based on climate models, should contribute to increases in precipitation-generated local flooding (e.g. flash flooding and urban flooding). This article assesses the literature included in the IPCC SREX report and new literature published since, and includes an assessment of changes in flood risk in seven of the regions considered in the recent IPCC SREX report—Africa, Asia, Central and South America, Europe, North America, Oceania and Polar regions. Also considering newer publications, this article is consistent with the recent IPCC SREX assessment finding that the impacts of climate change on flood characteristics are highly sensitive to the detailed nature of those changes and that presently we have only low confidence1 in numerical projections of changes in flood magnitude or frequency resulting from climate change.
Resumo:
Grassroots innovations emerge as networks generating innovative solutions for climate change adaptation and mitigation. However, it is unclear if grassroots innovations can be successful in responding to climate change. Little evidence exists on replication, international comparisons are rare, and research tends to overlook discontinued responses in favour of successful ones. We take the Transition Movement as a case study of a rapidly spreading transnational grassroots network, and include both active and non-active local transition initiatives. We investigate the replication of grassroots innovations in different contexts with the aim to uncover general patterns of success and failure, and identify questions for future research. An online survey was carried out in 23 countries (N=276). The data analysis entailed testing the effect of internal and contextual factors of success as drawn from the existing literature, and the identification of clusters of transition initiatives with similar internal and contextual factor configurations. Most transition initiatives consider themselves successful. Success is defined along the lines of social connectivity and empowerment, and external environmental impact. We find that less successful transition initiatives might underestimate the importance of contextual factors and material resources in influencing success. We also find that their diffusion is linked to the combination of local-global learning processes, and that there is an incubation period during which a transition initiative is consolidated. Transition initiatives seem capable of generalising organisational principles derived from unique local experiences that seem to be effective in other local contexts. However, the geographical locations matter with regard to where transition initiatives take root and the extent of their success, and ‘place attachment’ may have a role in the diffusion of successful initatives. We suggest that longitudinal comparative studies can advance our understanding in this regard, as well as inform the changing nature of the definition of success at different stages of grassroots innovation development, and the dynamic nature of local and global linkages.
Resumo:
We present a Bayesian image classification scheme for discriminating cloud, clear and sea-ice observations at high latitudes to improve identification of areas of clear-sky over ice-free ocean for SST retrieval. We validate the image classification against a manually classified dataset using Advanced Along Track Scanning Radiometer (AATSR) data. A three way classification scheme using a near-infrared textural feature improves classifier accuracy by 9.9 % over the nadir only version of the cloud clearing used in the ATSR Reprocessing for Climate (ARC) project in high latitude regions. The three way classification gives similar numbers of cloud and ice scenes misclassified as clear but significantly more clear-sky cases are correctly identified (89.9 % compared with 65 % for ARC). We also demonstrate the poetential of a Bayesian image classifier including information from the 0.6 micron channel to be used in sea-ice extent and ice surface temperature retrieval with 77.7 % of ice scenes correctly identified and an overall classifier accuracy of 96 %.
Resumo:
This paper presents an assessment of the implications of climate change for global river flood risk. It is based on the estimation of flood frequency relationships at a grid resolution of 0.5 × 0.5°, using a global hydrological model with climate scenarios derived from 21 climate models, together with projections of future population. Four indicators of the flood hazard are calculated; change in the magnitude and return period of flood peaks, flood-prone population and cropland exposed to substantial change in flood frequency, and a generalised measure of regional flood risk based on combining frequency curves with generic flood damage functions. Under one climate model, emissions and socioeconomic scenario (HadCM3 and SRES A1b), in 2050 the current 100-year flood would occur at least twice as frequently across 40 % of the globe, approximately 450 million flood-prone people and 430 thousand km2 of flood-prone cropland would be exposed to a doubling of flood frequency, and global flood risk would increase by approximately 187 % over the risk in 2050 in the absence of climate change. There is strong regional variability (most adverse impacts would be in Asia), and considerable variability between climate models. In 2050, the range in increased exposure across 21 climate models under SRES A1b is 31–450 million people and 59 to 430 thousand km2 of cropland, and the change in risk varies between −9 and +376 %. The paper presents impacts by region, and also presents relationships between change in global mean surface temperature and impacts on the global flood hazard. There are a number of caveats with the analysis; it is based on one global hydrological model only, the climate scenarios are constructed using pattern-scaling, and the precise impacts are sensitive to some of the assumptions in the definition and application.
Resumo:
The proliferation of artificial container habitats in urban areas has benefitted urban adaptable mosquito species globally. In areas where mosquitoes transmit viruses and parasites, it can promote vector population productivity and fuel mosquito-borne disease outbreaks. In Britain, storage of water in garden water butts is increasing, potentially expanding mosquito larval habitats and influencing population dynamics and mosquito-human contact. Here we show that the community composition, abundance and phenology of mosquitoes breeding in experimental water butt containers were influenced by urbanisation. Mosquitoes in urban containers were less species-rich but present in significantly higher densities (100.4±21.3) per container than those in rural containers (77.7±15.1). Urban containers were dominated by Culex pipiens (a potential vector of West Nile Virus [WNV]) and appear to be increasingly exploited by Anopheles plumbeus (a human-biting potential WNV and malaria vector). Culex phenology was influenced by urban land use type, with peaks in larval abundances occurring earlier in urban than rural containers. Among other factors, this was associated with an urban heat island effect which raised urban air and water temperatures by 0.9°C and 1.2°C respectively. Further increases in domestic water storage, particularly in urban areas, in combination with climate changes will likely alter mosquito population dynamics in the UK.
Resumo:
Puyasena et al. question our interpretation of climate-driven vegetation change on the Andean flank in western Amazonia during the middle Pleistocene and suggest that the use of Podocarpus spp. as a proxy of past climate change should be reassessed. We defend our assertion that vegetation change at the Erazo study site was predominantly driven by climate change due to concomitant changes recorded by multiple taxa in the fossil record.
Resumo:
A reconstruction of past environmental change from Ecuador reveals the response of lower montane forest on the Andean flank in western Amazonia to glacial-interglacial global climate change. Radiometric dating of volcanic ash indicates that deposition occurred ~324,000 to 193,000 years ago during parts of Marine Isotope Stages 9, 7, and 6. Fossil pollen and wood preserved within organic sediments suggest that the composition of the forest altered radically in response to glacial-interglacial climate change. The presence of Podocarpus macrofossils ~1000 meters below the lower limit of their modern distribution indicates a relative cooling of at least 5°C during glacials and persistence of wet conditions. Interglacial deposits contain thermophilic palms suggesting warm and wet climates. Hence, global temperature change can radically alter vegetation communities and biodiversity in this region.
Resumo:
Future changes in the stratospheric circulation could have an important impact on Northern winter tropospheric climate change, given that sea level pressure (SLP) responds not only to tropospheric circulation variations but also to vertically coherent variations in troposphere-stratosphere circulation. Here we assess Northern winter stratospheric change and its potential to influence surface climate change in the Coupled Model Intercomparison Project – phase 5 (CMIP5) multi-model ensemble. In the stratosphere at high latitudes, an easterly change in zonally averaged zonal wind is found for the majority of the CMIP5 models, under the Representative Concentration Pathway 8.5 scenario. Comparable results are also found in the 1% CO2 increase per year projections, indicating that the stratospheric easterly change is common feature in future climate projections. This stratospheric wind change, however, shows a significant spread among the models. By using linear regression, we quantify the impact of tropical upper troposphere warming, polar amplification and the stratospheric wind change on SLP. We find that the inter-model spread in stratospheric wind change contributes substantially to the inter-model spread in Arctic SLP change. The role of the stratosphere in determining part of the spread in SLP change is supported by the fact that the SLP change lags the stratospheric zonally averaged wind change. Taken together, these findings provide further support for the importance of simulating the coupling between the stratosphere and the troposphere, to narrow the uncertainty in the future projection of tropospheric circulation changes.