308 resultados para neural computing
Resumo:
Contrary to the widespread belief that people are positively motivated by reward incentives, some studies have shown that performance-based extrinsic reward can actually undermine a person's intrinsic motivation to engage in a task. This “undermining effect” has timely practical implications, given the burgeoning of performance-based incentive systems in contemporary society. It also presents a theoretical challenge for economic and reinforcement learning theories, which tend to assume that monetary incentives monotonically increase motivation. Despite the practical and theoretical importance of this provocative phenomenon, however, little is known about its neural basis. Herein we induced the behavioral undermining effect using a newly developed task, and we tracked its neural correlates using functional MRI. Our results show that performance-based monetary reward indeed undermines intrinsic motivation, as assessed by the number of voluntary engagements in the task. We found that activity in the anterior striatum and the prefrontal areas decreased along with this behavioral undermining effect. These findings suggest that the corticobasal ganglia valuation system underlies the undermining effect through the integration of extrinsic reward value and intrinsic task value.
Resumo:
This communication examines the suitability of a photo-patternable polydimethylsiloxane (PP-PDMS) elastomer as an insulating material for implantable microelectrodes. PP-PDMS is produced by mixing a photoinitiator (2-hydroxy-2-methylpropiophenone) with the PDMS base and curing agent. Subsequent exposure to UV radiation and development of the elastomeric “photo-resist” allows for the definition of well-defined openings within the PP-PDMS film. The dielectric constants of PP-PDMS and PDMS are similar (ε ≈ 2.6, f <;1MHz). Gold film microelectrodes patterned on glass or a PDMS substrate are encapsulated with PP-PDMS, while recording sites as small as 104 μm2 can be obtained in the PP-PDMS layer. The cytotoxicity of the PP-PDMS was preliminary tested in vitro by culturing 3T3 fibroblasts in PP-PDMS extracts. No adverse effects were observed in cultures exposed to PP-PDMS films initially leached in isopropanol solvent for 48h.
Resumo:
We are reporting on the fabrication and electrical characterization of a novel elastomer based micro-cuff neural interface. Electrodes are gold (Au) tracks of sub-100nm thickness and are thermally evaporated on a 0.5 mm thick polydimethylsiloxane (PDMS) substrate. We investigate how electrode area and immersion in phosphate buffered saline (PBS) at 37°C influence electrode impedance. A microfluidic channel is bonded to the electrode array to form the cuff. In an acute, in-vivo, proof-of-principle recording, the device is capable of detecting light stroking and pinch of a hind leg of an anaesthetized rat.
Resumo:
Communication signal processing applications often involve complex-valued (CV) functional representations for signals and systems. CV artificial neural networks have been studied theoretically and applied widely in nonlinear signal and data processing [1–11]. Note that most artificial neural networks cannot be automatically extended from the real-valued (RV) domain to the CV domain because the resulting model would in general violate Cauchy-Riemann conditions, and this means that the training algorithms become unusable. A number of analytic functions were introduced for the fully CV multilayer perceptrons (MLP) [4]. A fully CV radial basis function (RBF) nework was introduced in [8] for regression and classification applications. Alternatively, the problem can be avoided by using two RV artificial neural networks, one processing the real part and the other processing the imaginary part of the CV signal/system. A even more challenging problem is the inverse of a CV
Resumo:
We have optimised the atmospheric radiation algorithm of the FAMOUS climate model on several hardware platforms. The optimisation involved translating the Fortran code to C and restructuring the algorithm around the computation of a single air column. Instead of the existing MPI-based domain decomposition, we used a task queue and a thread pool to schedule the computation of individual columns on the available processors. Finally, four air columns are packed together in a single data structure and computed simultaneously using Single Instruction Multiple Data operations. The modified algorithm runs more than 50 times faster on the CELL’s Synergistic Processing Elements than on its main PowerPC processing element. On Intel-compatible processors, the new radiation code runs 4 times faster. On the tested graphics processor, using OpenCL, we find a speed-up of more than 2.5 times as compared to the original code on the main CPU. Because the radiation code takes more than 60% of the total CPU time, FAMOUS executes more than twice as fast. Our version of the algorithm returns bit-wise identical results, which demonstrates the robustness of our approach. We estimate that this project required around two and a half man-years of work.
Resumo:
A cardinal property of neural stem cells (NSCs) is their ability to adopt multiple fates upon differentiation. The epigenome is widely seen as a read-out of cellular potential and a manifestation of this can be seen in embryonic stem cells (ESCs), where promoters of many lineage-specific regulators are marked by a bivalent epigenetic signature comprising trimethylation of both lysine 4 and lysine 27 of histone H3 (H3K4me3 and H3K27me3, respectively). Bivalency has subsequently emerged as a powerful epigenetic indicator of stem cell potential. Here, we have interrogated the epigenome during differentiation of ESC-derived NSCs to immature GABAergic interneurons. We show that developmental transitions are accompanied by loss of bivalency at many promoters in line with their increasing developmental restriction from pluripotent ESC through multipotent NSC to committed GABAergic interneuron. At the NSC stage, the promoters of genes encoding many transcriptional regulators required for differentiation of multiple neuronal subtypes and neural crest appear to be bivalent, consistent with the broad developmental potential of NSCs. Upon differentiation to GABAergic neurons, all non-GABAergic promoters resolve to H3K27me3 monovalency, whereas GABAergic promoters resolve to H3K4me3 monovalency or retain bivalency. Importantly, many of these epigenetic changes occur before any corresponding changes in gene expression. Intriguingly, another group of gene promoters gain bivalency as NSCs differentiate toward neurons, the majority of which are associated with functions connected with maturation and establishment and maintenance of connectivity. These data show that bivalency provides a dynamic epigenetic signature of developmental potential in both NSCs and in early neurons. Stem Cells 2013;31:1868-1880.
Resumo:
Neural differentiation of embryonic stem cells (ESCs) requires coordinated repression of the pluripotency regulatory program and reciprocal activation of the neurogenic regulatory program. Upon neural induction, ESCs rapidly repress expression of pluripotency genes followed by staged activation of neural progenitor and differentiated neuronal and glial genes. The transcriptional factors that underlie maintenance of pluripotency are partially characterized whereas those underlying neural induction are much less explored, and the factors that coordinate these two developmental programs are completely unknown. One transcription factor, REST (repressor element 1 silencing transcription factor), has been linked with terminal differentiation of neural progenitors and more recently, and controversially, with control of pluripotency. Here, we show that in the absence of REST, coordination of pluripotency and neural induction is lost and there is a resultant delay in repression of pluripotency genes and a precocious activation of both neural progenitor and differentiated neuronal and glial genes. Furthermore, we show that REST is not required for production of radial glia-like progenitors but is required for their subsequent maintenance and differentiation into neurons, oligodendrocytes, and astrocytes. We propose that REST acts as a regulatory hub that coordinates timely repression of pluripotency with neural induction and neural differentiation.
Resumo:
Many in vitro systems used to examine multipotential neural progenitor cells (NPCs) rely on mitogens including fibroblast growth factor 2 (FGF2) for their continued expansion. However, FGF2 has also been shown to alter the expression of transcription factors (TFs) that determine cell fate. Here, we report that NPCs from the embryonic telencephalon grown without FGF2 retain many of their in vivo characteristics, making them a good model for investigating molecular mechanisms involved in cell fate specification and differentiation. However, exposure of cortical NPCs to FGF2 results in a profound change in the types of neurons generated, switching them from a glutamatergic to a GABAergic phenotype. This change closely correlates with the dramatic upregulation of TFs more characteristic of ventral telencephalic NPCs. In addition, exposure of cortical NPCs to FGF2 maintains their neurogenic potential in vitro, and NPCs spontaneously undergo differentiation following FGF2 withdrawal. These results highlight the importance of TFs in determining the types of neurons generated by NPCs in vitro. In addition, they show that FGF2, as well as acting as a mitogen, changes the developmental capabilities of NPCs. These findings have implications for the cell fate specification of in vitro-expanded NPCs and their ability to generate specific cell types for therapeutic applications. Disclosure of potential conflicts of interest is found at the end of this article.
Resumo:
The past few years have seen major advances in the field of NSC (neural stem cell) research with increasing emphasis towards its application in cell-replacement therapy for neurological disorders. However, the clinical application of NSCs will remain largely unfeasible until a comprehensive understanding of the cellular and molecular mechanisms of NSC fate specification is achieved. With this understanding will come an increased possibility to exploit the potential of stem cells in order to manufacture transplantable NSCs able to provide a safe and effective therapy for previously untreatable neurological disorders. Since the pathology of each of these disorders is determined by the loss or damage of a specific neural cell population, it may be necessary to generate a range of NSCs able to replace specific neurons or glia rather than generating a generic NSC population. Currently, a diverse range of strategies is being investigated with this goal in mind. In this review, we focus on the relationship between NSC specification and differentiation and discuss how this information may be used to direct NSCs towards a particular fate.
The Impact of office productivity cloud computing on energy consumption and greenhouse gas emissions
Resumo:
Cloud computing is usually regarded as being energy efficient and thus emitting less greenhouse gases (GHG) than traditional forms of computing. When the energy consumption of Microsoft’s cloud computing Office 365 (O365) and traditional Office 2010 (O2010) software suites were tested and modeled, some cloud services were found to consume more energy than the traditional form. The developed model in this research took into consideration the energy consumption at the three main stages of data transmission; data center, network, and end user device. Comparable products from each suite were selected and activities were defined for each product to represent a different computing type. Microsoft provided highly confidential data for the data center stage, while the networking and user device stages were measured directly. A new measurement and software apportionment approach was defined and utilized allowing the power consumption of cloud services to be directly measured for the user device stage. Results indicated that cloud computing is more energy efficient for Excel and Outlook which consumed less energy and emitted less GHG than the standalone counterpart. The power consumption of the cloud based Outlook (8%) and Excel (17%) was lower than their traditional counterparts. However, the power consumption of the cloud version of Word was 17% higher than its traditional equivalent. A third mixed access method was also measured for Word which emitted 5% more GHG than the traditional version. It is evident that cloud computing may not provide a unified way forward to reduce energy consumption and GHG. Direct conversion from the standalone package into the cloud provision platform can now consider energy and GHG emissions at the software development and cloud service design stage using the methods described in this research.
Resumo:
Background: Animal research indicates that the neural substrates of emotion regulation may be persistently altered by early environmental exposures. If similar processes operate in human development then this is significant, as the capacity to regulate emotional states is fundamental to human adaptation. Methods: We utilised a 22-year longitudinal study to examine the influence of early infant attachment to the mother, a key marker of early experience, on neural regulation of emotional states in young adults. Infant attachment status was measured via objective assessment at 18-months, and the neural underpinnings of the active regulation of affect were studied using fMRI at age 22 years. Results: Infant attachment status at 18-months predicted neural responding during the regulation of positive affect 20-years later. Specifically, while attempting to up-regulate positive emotions, adults who had been insecurely versus securely attached as infants showed greater activation in prefrontal regions involved in cognitive control and reduced co-activation of prefrontal cortex and nucleus accumbens, consistent with relative inefficiency in the neural regulation of positive affect. Conclusions: Disturbances in the mother-infant relationship may persistently alter the neural circuitry of emotion regulation, with potential implications for adjustment in adulthood.
Resumo:
Infant faces elicit early, specific activity in the orbitofrontal cortex (OFC), a key cortical region for reward and affective processing. A test of the causal relationship between infant facial configuration and OFC activity is provided by naturally occurring disruptions to the face structure. One such disruption is cleft lip, a small change to one facial feature, shown to disrupt parenting. Using magnetoencephalography, we investigated neural responses to infant faces with cleft lip compared with typical infant and adult faces. We found activity in the right OFC at 140 ms in response to typical infant faces but diminished activity to infant faces with cleft lip or adult faces. Activity in the right fusiform face area was of similar magnitude for typical adult and infant faces but was significantly lower for infant faces with cleft lip. This is the first evidence that a minor change to the infant face can disrupt neural activity potentially implicated in caregiving.
Resumo:
In this paper we propose methods for computing Fresnel integrals based on truncated trapezium rule approximations to integrals on the real line, these trapezium rules modified to take into account poles of the integrand near the real axis. Our starting point is a method for computation of the error function of complex argument due to Matta and Reichel (J Math Phys 34:298–307, 1956) and Hunter and Regan (Math Comp 26:539–541, 1972). We construct approximations which we prove are exponentially convergent as a function of N , the number of quadrature points, obtaining explicit error bounds which show that accuracies of 10−15 uniformly on the real line are achieved with N=12 , this confirmed by computations. The approximations we obtain are attractive, additionally, in that they maintain small relative errors for small and large argument, are analytic on the real axis (echoing the analyticity of the Fresnel integrals), and are straightforward to implement.
Resumo:
Many communication signal processing applications involve modelling and inverting complex-valued (CV) Hammerstein systems. We develops a new CV B-spline neural network approach for efficient identification of the CV Hammerstein system and effective inversion of the estimated CV Hammerstein model. Specifically, the CV nonlinear static function in the Hammerstein system is represented using the tensor product from two univariate B-spline neural networks. An efficient alternating least squares estimation method is adopted for identifying the CV linear dynamic model’s coefficients and the CV B-spline neural network’s weights, which yields the closed-form solutions for both the linear dynamic model’s coefficients and the B-spline neural network’s weights, and this estimation process is guaranteed to converge very fast to a unique minimum solution. Furthermore, an accurate inversion of the CV Hammerstein system can readily be obtained using the estimated model. In particular, the inversion of the CV nonlinear static function in the Hammerstein system can be calculated effectively using a Gaussian-Newton algorithm, which naturally incorporates the efficient De Boor algorithm with both the B-spline curve and first order derivative recursions. The effectiveness of our approach is demonstrated using the application to equalisation of Hammerstein channels.