349 resultados para climate change


Relevância:

100.00% 100.00%

Publicador:

Resumo:

How effective are multi-stakeholder scenarios building processes to bring diverse actors together and create a policy-making tool to support sustainable development and promote food security in the developing world under climate change? The effectiveness of a participatory scenario development process highlights the importance of ‘boundary work’ that links actors and organizations involved in generating knowledge on the one hand, and practitioners and policymakers who take actions based on that knowledge on the other. This study reports on the application of criteria for effective boundary work to a multi-stakeholder scenarios process in East Africa that brought together a range of regional agriculture and food systems actors. This analysis has enabled us to evaluate the extent to which these scenarios were seen by the different actors as credible, legitimate and salient, and thus more likely to be useful. The analysis has shown gaps and opportunities for improvement on these criteria, such as the quantification of scenarios, attention to translating and communicating the results through various channels and new approaches to enable a more inclusive and diverse group of participants. We conclude that applying boundary work criteria to multi-stakeholder scenarios processes can do much to increase the likelihood of developing sustainable development and food security policies that are more appropriate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Agriculture and food security are key sectors for intervention under climate change. Agricultural production is highly vulnerable even to 2C (low-end) predictions for global mean temperatures in 2100, with major implications for rural poverty and for both rural and urban food security. Agriculture also presents untapped opportunities for mitigation, given the large land area under crops and rangeland, and the additional mitigation potential of aquaculture. This paper presents a summary of current knowledge on options to support farmers, particularly smallholder farmers, in achieving food security through agriculture under climate change. Actions towards adaptation fall into two broad overlapping areas: (1) accelerated adaptation to progressive climate change over decadal time scales, for example integrated packages of technology, agronomy and policy options for farmers and food systems, and (2) better management of agricultural risks associated with increasing climate variability and extreme events, for example improved climate information services and safety nets. Maximization of agriculture’s mitigation potential will require investments in technological innovation and agricultural intensification linked to increased efficiency of inputs, and creation of incentives and monitoring systems that are inclusive of smallholder farmers. Food systems faced with climate change need urgent, broad-based action in spite of uncertainties.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Targets for stabilizing climate change are often based on considerations of the impacts of different levels of global warming, usually assessing the time of reaching a particular level of warming. However, some aspects of the Earth system, such as global mean temperatures1 and sea level rise due to thermal expansion2 or the melting of large ice sheets3, continue to respond long after the stabilization of radiative forcing. Here we use a coupled climate–vegetation model to show that in turn the terrestrial biosphere shows significant inertia in its response to climate change. We demonstrate that the global terrestrial biosphere can continue to change for decades after climate stabilization. We suggest that ecosystems can be committed to long-term change long before any response is observable: for example, we find that the risk of significant loss of forest cover in Amazonia rises rapidly for a global mean temperature rise above 2 °C. We conclude that such committed ecosystem changes must be considered in the definition of dangerous climate change, and subsequent policy development to avoid it.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Radiative forcing and climate sensitivity have been widely used as concepts to understand climate change. This work performs climate change experiments with an intermediate general circulation model (IGCM) to examine the robustness of the radiative forcing concept for carbon dioxide and solar constant changes. This IGCM has been specifically developed as a computationally fast model, but one that allows an interaction between physical processes and large-scale dynamics; the model allows many long integrations to be performed relatively quickly. It employs a fast and accurate radiative transfer scheme, as well as simple convection and surface schemes, and a slab ocean, to model the effects of climate change mechanisms on the atmospheric temperatures and dynamics with a reasonable degree of complexity. The climatology of the IGCM run at T-21 resolution with 22 levels is compared to European Centre for Medium Range Weather Forecasting Reanalysis data. The response of the model to changes in carbon dioxide and solar output are examined when these changes are applied globally and when constrained geographically (e.g. over land only). The CO2 experiments have a roughly 17% higher climate sensitivity than the solar experiments. It is also found that a forcing at high latitudes causes a 40% higher climate sensitivity than a forcing only applied at low latitudes. It is found that, despite differences in the model feedbacks, climate sensitivity is roughly constant over a range of distributions of CO2 and solar forcings. Hence, in the IGCM at least, the radiative forcing concept is capable of predicting global surface temperature changes to within 30%, for the perturbations described here. It is concluded that radiative forcing remains a useful tool for assessing the natural and anthropogenic impact of climate change mechanisms on surface temperature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Advances in the science and observation of climate change are providing a clearer understanding of the inherent variability of Earth’s climate system and its likely response to human and natural influences. The implications of climate change for the environment and society will depend not only on the response of the Earth system to changes in radiative forcings, but also on how humankind responds through changes in technology, economies, lifestyle and policy. Extensive uncertainties exist in future forcings of and responses to climate change, necessitating the use of scenarios of the future to explore the potential consequences of different response options. To date, such scenarios have not adequately examined crucial possibilities, such as climate change mitigation and adaptation, and have relied on research processes that slowed the exchange of information among physical, biological and social scientists. Here we describe a new process for creating plausible scenarios to investigate some of the most challenging and important questions about climate change confronting the global community

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The CWRF is developed as a climate extension of the Weather Research and Forecasting model (WRF) by incorporating numerous improvements in the representation of physical processes and integration of external (top, surface, lateral) forcings that are crucial to climate scales, including interactions between land, atmosphere, and ocean; convection and microphysics; and cloud, aerosol, and radiation; and system consistency throughout all process modules. This extension inherits all WRF functionalities for numerical weather prediction while enhancing the capability for climate modeling. As such, CWRF can be applied seamlessly to weather forecast and climate prediction. The CWRF is built with a comprehensive ensemble of alternative parameterization schemes for each of the key physical processes, including surface (land, ocean), planetary boundary layer, cumulus (deep, shallow), microphysics, cloud, aerosol, and radiation, and their interactions. This facilitates the use of an optimized physics ensemble approach to improve weather or climate prediction along with a reliable uncertainty estimate. The CWRF also emphasizes the societal service capability to provide impactrelevant information by coupling with detailed models of terrestrial hydrology, coastal ocean, crop growth, air quality, and a recently expanded interactive water quality and ecosystem model. This study provides a general CWRF description and basic skill evaluation based on a continuous integration for the period 1979– 2009 as compared with that of WRF, using a 30-km grid spacing over a domain that includes the contiguous United States plus southern Canada and northern Mexico. In addition to advantages of greater application capability, CWRF improves performance in radiation and terrestrial hydrology over WRF and other regional models. Precipitation simulation, however, remains a challenge for all of the tested models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate ozone changes from preindustrial times to the present using a chemistry-climate model. The influence of changes in physical climate, ozone-depleting substances, N2O, and tropospheric ozone precursors is estimated using equilibrium simulations with these different factors set at either preindustrial or present-day values. When these effects are combined, the entire decrease in total column ozone from preindustrial to present day is very small (–1.8 DU) in the global annual average, though with significant decreases in total column ozone over large parts of the Southern Hemisphere during austral spring and widespread increases in column ozone over the Northern Hemisphere during boreal summer. A significant contribution to the total ozone column change is the increase in lower stratospheric ozone associated with the increase in ozone precursors (5.9 DU). Also noteworthy is the near cancellation of the global average climate change effect on ozone (3.5 DU) by the increase in N2O (–3.9 DU).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Increasing cereal yield is needed to meet the projected increased demand for world food supply of about 70% by 2050. Sirius, a process-based model for wheat, was used to estimate yield potential for wheat ideotypes optimized for future climatic projections (HadCM3 global climate model) for ten wheat growing areas of Europe. It was predicted that the detrimental effect of drought stress on yield would be decreased due to enhanced tailoring of phenology to future weather patterns, and due to genetic improvements in the response of photosynthesis and green leaf duration to water shortage. Yield advances could be made through extending maturation and thereby improve resource capture and partitioning. However the model predicted an increase in frequency of heat stress at meiosis and anthesis. Controlled environment experiments quantify the effects of heat and drought at booting and flowering on grain numbers and potential grain size. A current adaptation of wheat to areas of Europe with hotter and drier summers is a quicker maturation which helps to escape from excessive stress, but results in lower yields. To increase yield potential and to respond to climate change, increased tolerance to heat and drought stress should remain priorities for the genetic improvement of wheat.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Climate change in the UK is expected to cause increases in temperatures, altered precipitation patterns and more frequent and extreme weather events. In this review we discuss climate effects on dissolved organic matter (DOM), how altered DOM and water physico-chemical properties will affect treatment processes and assess the utility of techniques used to remove DOM and monitor water quality. A critical analysis of the literature has been undertaken with a focus on catchment drivers of DOM character, removal of DOM via coagulation and the formation of disinfectant by-products (DBPs). We suggest that: (1) upland catchments recovering from acidification will continue to produce more DOM with a greater hydrophobic fraction as solubility controls decrease; (2) greater seasonality in DOM export is likely in future due to altered precipitation patterns; (3) changes in species diversity and water properties could encourage algal blooms; and (4) that land management and vegetative changes may have significant effects on DOM export and treatability but require further research. Increases in DBPs may occur where catchments have high influence from peatlands or where algal blooms become an issue. To increase resilience to variable DOM quantity and character we suggest that one or more of the following steps are undertaken at the treatment works: a) ‘enhanced coagulation’ optimised for DOM removal; b) switching from aluminium to ferric coagulants and/or incorporating coagulant aids; c) use of magnetic ion-exchange (MIEX) pre-coagulation; and d) activated carbon filtration post-coagulation. Fluorescence and UV absorbance techniques are highlighted as potential methods for low-cost, rapid on-line process optimisation to improve DOM removal and minimise DBPs.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An online national survey among the Spanish population (n = 602) was conducted to examine the factors underlying a person’s support for commitments to global climate change reductions. Multiple hierarchical regression analysis was conducted in four steps and a structural equations model was tested. A survey tool designed by the Yale Project on Climate Change Communication was applied in order to build scales for the variables introduced in the study. The results show that perceived consumer effectiveness and risk perception are determinant factors of commitment to mitigating global climate change. However, there are differences in the influence that other factors, such as socio-demographics, view of nature and cultural cognition, have on the last predicted variable.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Observations of Earth from space have been made for over 40 years and have contributed to advances in many aspects of climate science. However, attempts to exploit this wealth of data are often hampered by a lack of homogeneity and continuity and by insufficient understanding of the products and their uncertainties. There is, therefore, a need to reassess and reprocess satellite datasets to maximize their usefulness for climate science. The European Space Agency has responded to this need by establishing the Climate Change Initiative (CCI). The CCI will create new climate data records for (currently) 13 essential climate variables (ECVs) and make these open and easily accessible to all. Each ECV project works closely with users to produce time series from the available satellite observations relevant to users' needs. A climate modeling users' group provides a climate system perspective and a forum to bring the data and modeling communities together. This paper presents the CCI program. It outlines its benefit and presents approaches and challenges for each ECV project, covering clouds, aerosols, ozone, greenhouse gases, sea surface temperature, ocean color, sea level, sea ice, land cover, fire, glaciers, soil moisture, and ice sheets. It also discusses how the CCI approach may contribute to defining and shaping future developments in Earth observation for climate science.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ninety-four sites worldwide have sufficient resolution and dating to document the impact of millennial-scale climate variability on vegetation and fire regimes during the last glacial period. Although Dansgaard–Oeschger (D–O) cycles all show a basically similar gross structure, they vary in the magnitude and the length of the warm and cool intervals. We illustrate the geographic patterns in the climate-induced changes in vegetation by comparing D–O 6, D–O 8 and D–O 19. There is a strong response to both D–O warming events and subsequent cooling, most marked in the northern extratropics. Pollen records from marine cores from the northern extratropics confirm that there is no lag between the change in climate and the vegetation response, within the limits of the dating resolution (50–100 years). However, the magnitude of the change in vegetation is regionally specific and is not a simple function of either the magnitude or the duration of the change in climate as registered in Greenland ice cores. Fire regimes also show an initial immediate response to climate changes, but during cooling intervals there is a slow recovery of biomass burning after the initial reduction, suggesting a secondary control through the recovery of vegetation productivity. In the extratropics, vegetation changes are largely determined by winter temperatures while in the tropics they are largely determined by changes in plant-available water. Tropical vegetation records show changes corresponding to Heinrich Stadials but the response to D–O warming events is less marked than in the northern extratropics. There are very few high-resolution records from the Southern Hemisphere extratropics, but these records also show both a vegetation and fire response to millennial-scale climate variability. It is not yet possible to determine unequivocally whether terrestrial records reflect the asynchroneity apparent in the ice-core records.