246 resultados para Dataset
Resumo:
Immigration has risen substantially in many European economies, with far-reaching if still uncertain implications for labor markets and industrial relations. This paper investigates such implications, focusing on employment flexibility, involving both ‘external flexibility’ (fixed-term or temporary agency and/or involuntary part-time work) and ‘internal flexibility’ (overtime and/or balancing-time accounts). The paper identifies reasons why immigration should generally increase the incidence of such flexibility, and why external should rise more than internal flexibility. The paper supports these claims using a dataset of establishments in sixteen European countries.
Resumo:
In order to accelerate computing the convex hull on a set of n points, a heuristic procedure is often applied to reduce the number of points to a set of s points, s ≤ n, which also contains the same hull. We present an algorithm to precondition 2D data with integer coordinates bounded by a box of size p × q before building a 2D convex hull, with three distinct advantages. First, we prove that under the condition min(p, q) ≤ n the algorithm executes in time within O(n); second, no explicit sorting of data is required; and third, the reduced set of s points forms a simple polygonal chain and thus can be directly pipelined into an O(n) time convex hull algorithm. This paper empirically evaluates and quantifies the speed up gained by preconditioning a set of points by a method based on the proposed algorithm before using common convex hull algorithms to build the final hull. A speedup factor of at least four is consistently found from experiments on various datasets when the condition min(p, q) ≤ n holds; the smaller the ratio min(p, q)/n is in the dataset, the greater the speedup factor achieved.
Resumo:
Long-duration observations of Neptune’s brightness in two visible wavelengths provide a disk-averaged estimate of its atmospheric aerosol. Brightness variations were previously associated with the 11-year solar cycle, through solar-modulated mechanisms linked with either ultra-violet (UV) or galactic cosmic ray (GCR) effects on atmospheric particles. Here we use a recently extended brightness dataset (1972-2014), with physically realistic modelling to show that rather than alternatives, UV and GCR are likely to be modulating Neptune’s atmosphere in combination. The importance of GCR is further supported by the response of Neptune's atmosphere to an intermittent 1.5 to 1.9 year periodicity, which occurred preferentially in GCR (not UV) during the mid-1980s. This periodicity was detected both at Earth, and in GCR measured by Voyager 2, then near Neptune. A similar coincident variability in Neptune’s brightness suggests nucleation onto GCR ions. Both GCR and UV mechanisms may occur more rapidly than the subsequent atmospheric particle transport.
Resumo:
Based on a large dataset from eight Asian economies, we test the impact of post-crisis regulatory reforms on the performance of depository institutions in countries at different levels of financial development. We allow for technological heterogeneity and estimate a set of country-level stochastic cost frontiers followed by a deterministic bootstrapped meta-frontier to evaluate cost efficiency and cost technology. Our results support the view that liberalization policies have a positive impact on bank performance, while the reverse is true for prudential regulation policies. The removal of activities restrictions, bank privatization and foreign bank entry have a positive and significant impact on technological progress and cost efficiency. In contrast, prudential policies, which aim to protect the banking sector from excessive risk-taking, tend to adversely affect banks cost efficiency but not cost technology.
Resumo:
Observations obtained during an 8-month deployment of AMF2 in a boreal environment in Hyytiälä, Finland, and the 20-year comprehensive in-situ data from SMEAR-II station enable the characterization of biogenic aerosol, clouds and precipitation, and their interactions. During “Biogenic Aerosols - Effects on Clouds and Climate (BAECC)”, the U.S. Department of Energy’s Atmospheric Radiation Measurement (ARM) Program deployed the ARM 2nd Mobile Facility (AMF2) to Hyytiälä, Finland, for an 8-month intensive measurement campaign from February to September 2014. The primary research goal is to understand the role of biogenic aerosols in cloud formation. Hyytiälä is host to SMEAR-II (Station for Measuring Forest Ecosystem-Atmosphere Relations), one of the world’s most comprehensive surface in-situ observation sites in a boreal forest environment. The station has been measuring atmospheric aerosols, biogenic emissions and an extensive suite of parameters relevant to atmosphere-biosphere interactions continuously since 1996. Combining vertical profiles from AMF2 with surface-based in-situ SMEAR-II observations allow the processes at the surface to be directly related to processes occurring throughout the entire tropospheric column. Together with the inclusion of extensive surface precipitation measurements, and intensive observation periods involving aircraft flights and novel radiosonde launches, the complementary observations provide a unique opportunity for investigating aerosol-cloud interactions, and cloud-to-precipitation processes, in a boreal environment. The BAECC dataset provides opportunities for evaluating and improving models of aerosol sources and transport, cloud microphysical processes, and boundary-layer structures. In addition, numerical models are being used to bridge the gap between surface-based and tropospheric observations.
Resumo:
We study the relationship between the sentiment levels of Twitter users and the evolving network structure that the users created by @-mentioning each other. We use a large dataset of tweets to which we apply three sentiment scoring algorithms, including the open source SentiStrength program. Specifically we make three contributions. Firstly we find that people who have potentially the largest communication reach (according to a dynamic centrality measure) use sentiment differently than the average user: for example they use positive sentiment more often and negative sentiment less often. Secondly we find that when we follow structurally stable Twitter communities over a period of months, their sentiment levels are also stable, and sudden changes in community sentiment from one day to the next can in most cases be traced to external events affecting the community. Thirdly, based on our findings, we create and calibrate a simple agent-based model that is capable of reproducing measures of emotive response comparable to those obtained from our empirical dataset.