235 resultados para Reading machines


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper considers students’ views of why reading aloud takes place and what are its effects.The results of two small focus-group discussions are presented, in which high school students were given the opportunity to express their responses to the practice of reading aloud in the classroom. Their responses are considered in the context of theoretical perspectives: pedagogical, reader-response and social/vocational. Analysis of responses reveals acknowledgement that reading aloud is not only a useful skill but also that it is a site of anxiety and even conflict.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work investigates the problem of feature selection in neuroimaging features from structural MRI brain images for the classification of subjects as healthy controls, suffering from Mild Cognitive Impairment or Alzheimer’s Disease. A Genetic Algorithm wrapper method for feature selection is adopted in conjunction with a Support Vector Machine classifier. In very large feature sets, feature selection is found to be redundant as the accuracy is often worsened when compared to an Support Vector Machine with no feature selection. However, when just the hippocampal subfields are used, feature selection shows a significant improvement of the classification accuracy. Three-class Support Vector Machines and two-class Support Vector Machines combined with weighted voting are also compared with the former and found more useful. The highest accuracy achieved at classifying the test data was 65.5% using a genetic algorithm for feature selection with a three-class Support Vector Machine classifier.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes the methodology of providing multiprobability predictions for proteomic mass spectrometry data. The methodology is based on a newly developed machine learning framework called Venn machines. Is allows to output a valid probability interval. The methodology is designed for mass spectrometry data. For demonstrative purposes, we applied this methodology to MALDI-TOF data sets in order to predict the diagnosis of heart disease and early diagnoses of ovarian cancer and breast cancer. The experiments showed that probability intervals are narrow, that is, the output of the multiprobability predictor is similar to a single probability distribution. In addition, probability intervals produced for heart disease and ovarian cancer data were more accurate than the output of corresponding probability predictor. When Venn machines were forced to make point predictions, the accuracy of such predictions is for the most data better than the accuracy of the underlying algorithm that outputs single probability distribution of a label. Application of this methodology to MALDI-TOF data sets empirically demonstrates the validity. The accuracy of the proposed method on ovarian cancer data rises from 66.7 % 11 months in advance of the moment of diagnosis to up to 90.2 % at the moment of diagnosis. The same approach has been applied to heart disease data without time dependency, although the achieved accuracy was not as high (up to 69.9 %). The methodology allowed us to confirm mass spectrometry peaks previously identified as carrying statistically significant information for discrimination between controls and cases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Haptic devices tend to be kept small as it is easier to achieve a large change of stiffness with a low associated apparent mass. If large movements are required there is a usually a reduction in the quality of the haptic sensations which can be displayed. The typical measure of haptic device performance is impedance-width (z-width) but this does not account for actuator saturation, usable workspace or the ability to do rapid movements. This paper presents the analysis and evaluation of a haptic device design, utilizing a variant of redundant kinematics, sometimes referred to as a macro-micro configuration, intended to allow large and fast movements without loss of impedance-width. A brief mathematical analysis of the design constraints is given and a prototype system is described where the effects of different elements of the control scheme can be examined to better understand the potential benefits and trade-offs in the design. Finally, the performance of the system is evaluated using a Fitts’ Law test and found to compare favourably with similar evaluations of smaller workspace devices.