467 resultados para REGIONAL CLIMATE MODELS
Resumo:
To bridge the gaps between traditional mesoscale modelling and microscale modelling, the National Center for Atmospheric Research, in collaboration with other agencies and research groups, has developed an integrated urban modelling system coupled to the weather research and forecasting (WRF) model as a community tool to address urban environmental issues. The core of this WRF/urban modelling system consists of the following: (1) three methods with different degrees of freedom to parameterize urban surface processes, ranging from a simple bulk parameterization to a sophisticated multi-layer urban canopy model with an indoor–outdoor exchange sub-model that directly interacts with the atmospheric boundary layer, (2) coupling to fine-scale computational fluid dynamic Reynolds-averaged Navier–Stokes and Large-Eddy simulation models for transport and dispersion (T&D) applications, (3) procedures to incorporate high-resolution urban land use, building morphology, and anthropogenic heating data using the National Urban Database and Access Portal Tool (NUDAPT), and (4) an urbanized high-resolution land data assimilation system. This paper provides an overview of this modelling system; addresses the daunting challenges of initializing the coupled WRF/urban model and of specifying the potentially vast number of parameters required to execute the WRF/urban model; explores the model sensitivity to these urban parameters; and evaluates the ability of WRF/urban to capture urban heat islands, complex boundary-layer structures aloft, and urban plume T&D for several major metropolitan regions. Recent applications of this modelling system illustrate its promising utility, as a regional climate-modelling tool, to investigate impacts of future urbanization on regional meteorological conditions and on air quality under future climate change scenarios. Copyright © 2010 Royal Meteorological Society
Resumo:
Black carbon aerosol plays a unique and important role in Earth’s climate system. Black carbon is a type of carbonaceous material with a unique combination of physical properties. This assessment provides an evaluation of black-carbon climate forcing that is comprehensive in its inclusion of all known and relevant processes and that is quantitative in providing best estimates and uncertainties of the main forcing terms: direct solar absorption; influence on liquid, mixed phase, and ice clouds; and deposition on snow and ice. These effects are calculated with climate models, but when possible, they are evaluated with both microphysical measurements and field observations. Predominant sources are combustion related, namely, fossil fuels for transportation, solid fuels for industrial and residential uses, and open burning of biomass. Total global emissions of black carbon using bottom-up inventory methods are 7500 Gg yr�-1 in the year 2000 with an uncertainty range of 2000 to 29000. However, global atmospheric absorption attributable to black carbon is too low in many models and should be increased by a factor of almost 3. After this scaling, the best estimate for the industrial-era (1750 to 2005) direct radiative forcing of atmospheric black carbon is +0.71 W m�-2 with 90% uncertainty bounds of (+0.08, +1.27)Wm�-2. Total direct forcing by all black carbon sources, without subtracting the preindustrial background, is estimated as +0.88 (+0.17, +1.48) W m�-2. Direct radiative forcing alone does not capture important rapid adjustment mechanisms. A framework is described and used for quantifying climate forcings, including rapid adjustments. The best estimate of industrial-era climate forcing of black carbon through all forcing mechanisms, including clouds and cryosphere forcing, is +1.1 W m�-2 with 90% uncertainty bounds of +0.17 to +2.1 W m�-2. Thus, there is a very high probability that black carbon emissions, independent of co-emitted species, have a positive forcing and warm the climate. We estimate that black carbon, with a total climate forcing of +1.1 W m�-2, is the second most important human emission in terms of its climate forcing in the present-day atmosphere; only carbon dioxide is estimated to have a greater forcing. Sources that emit black carbon also emit other short-lived species that may either cool or warm climate. Climate forcings from co-emitted species are estimated and used in the framework described herein. When the principal effects of short-lived co-emissions, including cooling agents such as sulfur dioxide, are included in net forcing, energy-related sources (fossil fuel and biofuel) have an industrial-era climate forcing of +0.22 (�-0.50 to +1.08) W m-�2 during the first year after emission. For a few of these sources, such as diesel engines and possibly residential biofuels, warming is strong enough that eliminating all short-lived emissions from these sources would reduce net climate forcing (i.e., produce cooling). When open burning emissions, which emit high levels of organic matter, are included in the total, the best estimate of net industrial-era climate forcing by all short-lived species from black-carbon-rich sources becomes slightly negative (�-0.06 W m�-2 with 90% uncertainty bounds of �-1.45 to +1.29 W m�-2). The uncertainties in net climate forcing from black-carbon-rich sources are substantial, largely due to lack of knowledge about cloud interactions with both black carbon and co-emitted organic carbon. In prioritizing potential black-carbon mitigation actions, non-science factors, such as technical feasibility, costs, policy design, and implementation feasibility play important roles. The major sources of black carbon are presently in different stages with regard to the feasibility for near-term mitigation. This assessment, by evaluating the large number and complexity of the associated physical and radiative processes in black-carbon climate forcing, sets a baseline from which to improve future climate forcing estimates.
Resumo:
The main uncertainty in anthropogenic forcing of the Earth’s climate stems from pollution aerosols, particularly their ‘‘indirect effect’’ whereby aerosols modify cloud properties. We develop a new methodology to derive a measurement-based estimate using almost exclusively information from an Earth radiation budget instrument (CERES) and a radiometer (MODIS). We derive a statistical relationship between planetary albedo and cloud properties, and, further, between the cloud properties and column aerosol concentration. Combining these relationships with a data set of satellite-derived anthropogenic aerosol fraction, we estimate an anthropogenic radiative forcing of �-0.9 ± 0.4 Wm�-2 for the aerosol direct effect and of �-0.2 ± 0.1 Wm�-2 for the cloud albedo effect. Because of uncertainties in both satellite data and the method, the uncertainty of this result is likely larger than the values given here which correspond only to the quantifiable error estimates. The results nevertheless indicate that current global climate models may overestimate the cloud albedo effect.
Resumo:
The oxidation of SO2 to sulphate aerosol is an important process to include in climate models, and uncertainties caused by ignoring feedback mechanisms affecting the oxidants concerned need to be investigated. Here we present the results of an investigation into the sensitivity of sulphate concentrations to oxidant changes (from changes in climate and in emissions of oxidant precursors) and to changes in climate, in a version of HadGAM1 (the atmosphere-only version of HadGEM1) with an improved sulphur cycle scheme. We find that, when oxidants alone are changed, the global total sulphate burden decreases by approximately 3%, due mainly to a reduction in the OH burden. When climate alone is changed, our results show that the global total sulphate burden increases by approximately 9%; we conclude that this is probably attributable to reduced precipitation in regions of high sulphate abundance. When both oxidants and climate are changed simultaneously, we find that the effects of the two changes combine approximately linearly.
Resumo:
Urbanization, the expansion of built-up areas, is an important yet less-studied aspect of land use/land cover change in climate science. To date, most global climate models used to evaluate effects of land use/land cover change on climate do not include an urban parameterization. Here, the authors describe the formulation and evaluation of a parameterization of urban areas that is incorporated into the Community Land Model, the land surface component of the Community Climate System Model. The model is designed to be simple enough to be compatible with structural and computational constraints of a land surface model coupled to a global climate model yet complex enough to explore physically based processes known to be important in determining urban climatology. The city representation is based upon the “urban canyon” concept, which consists of roofs, sunlit and shaded walls, and canyon floor. The canyon floor is divided into pervious (e.g., residential lawns, parks) and impervious (e.g., roads, parking lots, sidewalks) fractions. Trapping of longwave radiation by canyon surfaces and solar radiation absorption and reflection is determined by accounting for multiple reflections. Separate energy balances and surface temperatures are determined for each canyon facet. A one-dimensional heat conduction equation is solved numerically for a 10-layer column to determine conduction fluxes into and out of canyon surfaces. Model performance is evaluated against measured fluxes and temperatures from two urban sites. Results indicate the model does a reasonable job of simulating the energy balance of cities.
Resumo:
The potential impact of climate change on areas of strategic importance for water resources remains a concern. Here, river flow projections for the River Medway, above Teston in southeast England are presented, which is just such an area of strategic importance. The river flow projections use climate inputs from the Hadley Centre Regional Climate Model (HadRM3) for the time period 1960–2080 (a subset of the early release UKCP09 projections). River flow predictions are calculated using CATCHMOD, the main river flow prediction tool of the Environment Agency (EA) of England and Wales. In order to use this tool in the best way for climate change predictions, model setup and performance are analysed using sensitivity and uncertainty analysis. The model's representation of hydrological processes is discussed and the direct percolation and first linear storage constant parameters are found to strongly affect model results in a complex way, with the former more important for low flows and the latter for high flows. The uncertainty in predictions resulting from the hydrological model parameters is demonstrated and the projections of river flow under future climate are analysed. A clear climate change impact signal is evident in the results with a persistent lowering of mean daily river flows for all months and for all projection time slices. Results indicate that a projection of lower flows under future climate is valid even taking into account the uncertainties considered in this modelling chain exercise. The model parameter uncertainty becomes more significant under future climate as the river flows become lower. This has significant implications for those making policy decisions based on such modelling results. Copyright © 2010 John Wiley & Sons, Ltd.
Resumo:
The dependence of the annual mean tropical precipitation on horizontal resolution is investigated in the atmospheric version of the Hadley Centre General Environment Model (HadGEM1). Reducing the grid spacing from about 350 km to 110 km improves the precipitation distribution in most of the tropics. In particular, characteristic dry biases over South and Southeast Asia including the Maritime Continent as well as wet biases over the western tropical oceans are reduced. The annual-mean precipitation bias is reduced by about one third over the Maritime Continent and the neighbouring ocean basins associated with it via the Walker circulation. Sensitivity experiments show that much of the improvement with resolution in the Maritime Continent region is due to the specification of better resolved surface boundary conditions (land fraction, soil and vegetation parameters) at the higher resolution. It is shown that in particular the formulation of the coastal tiling scheme may cause resolution sensitivity of the mean simulated climate. The improvement in the tropical mean precipitation in this region is not primarily associated with the better representation of orography at the higher resolution, nor with changes in the eddy transport of moisture. Sizeable sensitivity to changes in the surface fields may be one of the reasons for the large variation of the mean tropical precipitation distribution seen across climate models.
Resumo:
Simulations of the climatic response to mid-Holocene (6 ka BP) orbital forcing with two coupled ocean–atmosphere models (FOAM and CSM) show enhancement of monsoonal precipitation in parts of the American Southwest, Central America and northernmost South America during Northern Hemisphere summer. The enhanced onshore flow that brings precipitation into Central America is caused by a northward displacement of the inter-tropical convergence zone, driven by cooling of the equatorial and warming of the northern subtropical and mid-latitude ocean. Ocean feedbacks also enhance precipitation over the American Southwest, although the increase in monsoon precipitation there is largely driven by increases in land-surface temperature. The northward shift in the equatorial precipitation band that causes enhanced precipitation in Central America and the American Southwest has a negative feedback effect on monsoonal precipitation in northern South America. The simulations demonstrate that mid-Holocene aridity in the mid-continent of North America is dynamically linked to the orbitally induced enhancement of the summer monsoon in the American Southwest, with a spatial structure (wet in the Southwest and dry in the mid-continent) similar to that found in strong monsoon years today. Changes in winter precipitation along the west coast of North America, in Central America and along the Gulf Coast, caused by southward-displacement of the westerly storm tracks, indicate that changes in the Northern Hemisphere winter monsoon also play a role in regional climate changes during the mid-Holocene. Although the simulations with FOAM and CSM differ in detail, the general mechanisms and patterns are common to both. The model results thus provide a coherent dynamical explanation for regional patterns of increased or decreased aridity shown by vegetation, lake status and aeolian data from the Americas
Resumo:
This note describes a simple procedure for removing unphysical temporal discontinuities in ERA-Interim upper stratospheric global mean temperatures in March 1985 and August 1998 that have arisen due to changes in satellite radiance data used in the assimilation. The derived temperature adjustments (offsets) are suitable for use in stratosphere-resolving chemistry-climate models that are nudged (relaxed) to ERA-Interim winds and temperatures. Simulations using a nudged version of the Canadian Middle Atmosphere Model (CMAM) show that the inclusion of the temperature adjustments produces temperature time series that are devoid of the large jumps in 1985 and 1998. Due to its strong temperature dependence, the simulated upper stratospheric ozone is also shown to vary smoothly in time, unlike in a nudged simulation without the adjustments where abrupt changes in ozone occur at the times of the temperature jumps. While the adjustments to the ERA-Interim temperatures remove significant artefacts in the nudged CMAM simulation, spurious transient effects that arise due to water vapour and persist for about 5 yr after the 1979 switch to ERA-Interim data are identified, underlining the need for caution when analysing trends in runs nudged to reanalyses.
Resumo:
This paper compares the effects of two indicative climate mitigation policies on river flows in six catchments in the UK with two scenarios representing un-mitigated emissions. It considers the consequences of uncertainty in both the pattern of catchment climate change as represented by different climate models and hydrological model parameterisation on the effects of mitigation policy. Mitigation policy has little effect on estimated flow magnitudes in 2030. By 2050 a mitigation policy which achieves a 2oC temperature rise target reduces impacts on low flows by 20-25% compared to a business-as-usual emissions scenario which increases temperatures by 4oC by the end of the 21st century, but this is small compared to the range in impacts between different climate model scenarios. However, the analysis also demonstrates that an early peak in emissions would reduce impacts by 40-60% by 2080 (compared with the 4oC pathway), easing the adaptation challenge over the long term, and can delay by several decades the impacts that would be experienced from around 2050 in the absence of policy. The estimated proportion of impacts avoided varies between climate model patterns and, to a lesser extent, hydrological model parameterisations, due to variations in the projected shape of the relationship between climate forcing and hydrological response.
Resumo:
Numerical climate models constitute the best available tools to tackle the problem of climate prediction. Two assumptions lie at the heart of their suitability: (1) a climate attractor exists, and (2) the numerical climate model's attractor lies on the actual climate attractor, or at least on the projection of the climate attractor on the model's phase space. In this contribution, the Lorenz '63 system is used both as a prototype system and as an imperfect model to investigate the implications of the second assumption. By comparing results drawn from the Lorenz '63 system and from numerical weather and climate models, the implications of using imperfect models for the prediction of weather and climate are discussed. It is shown that the imperfect model's orbit and the system's orbit are essentially different, purely due to model error and not to sensitivity to initial conditions. Furthermore, if a model is a perfect model, then the attractor, reconstructed by sampling a collection of initialised model orbits (forecast orbits), will be invariant to forecast lead time. This conclusion provides an alternative method for the assessment of climate models.
Resumo:
Understanding the sources of systematic errors in climate models is challenging because of coupled feedbacks and errors compensation. The developing seamless approach proposes that the identification and the correction of short term climate model errors have the potential to improve the modeled climate on longer time scales. In previous studies, initialised atmospheric simulations of a few days have been used to compare fast physics processes (convection, cloud processes) among models. The present study explores how initialised seasonal to decadal hindcasts (re-forecasts) relate transient week-to-month errors of the ocean and atmospheric components to the coupled model long-term pervasive SST errors. A protocol is designed to attribute the SST biases to the source processes. It includes five steps: (1) identify and describe biases in a coupled stabilized simulation, (2) determine the time scale of the advent of the bias and its propagation, (3) find the geographical origin of the bias, (4) evaluate the degree of coupling in the development of the bias, (5) find the field responsible for the bias. This strategy has been implemented with a set of experiments based on the initial adjustment of initialised simulations and exploring various degrees of coupling. In particular, hindcasts give the time scale of biases advent, regionally restored experiments show the geographical origin and ocean-only simulations isolate the field responsible for the bias and evaluate the degree of coupling in the bias development. This strategy is applied to four prominent SST biases of the IPSLCM5A-LR coupled model in the tropical Pacific, that are largely shared by other coupled models, including the Southeast Pacific warm bias and the equatorial cold tongue bias. Using the proposed protocol, we demonstrate that the East Pacific warm bias appears in a few months and is caused by a lack of upwelling due to too weak meridional coastal winds off Peru. The cold equatorial bias, which surprisingly takes 30 years to develop, is the result of an equatorward advection of midlatitude cold SST errors. Despite large development efforts, the current generation of coupled models shows only little improvement. The strategy proposed in this study is a further step to move from the current random ad hoc approach, to a bias-targeted, priority setting, systematic model development approach.
Resumo:
Global syntheses of palaeoenvironmental data are required to test climate models under conditions different from the present. Data sets for this purpose contain data from spatially extensive networks of sites. The data are either directly comparable to model output or readily interpretable in terms of modelled climate variables. Data sets must contain sufficient documentation to distinguish between raw (primary) and interpreted (secondary, tertiary) data, to evaluate the assumptions involved in interpretation of the data, to exercise quality control, and to select data appropriate for specific goals. Four data bases for the Late Quaternary, documenting changes in lake levels since 30 kyr BP (the Global Lake Status Data Base), vegetation distribution at 18 kyr and 6 kyr BP (BIOME 6000), aeolian accumulation rates during the last glacial-interglacial cycle (DIRTMAP), and tropical terrestrial climates at the Last Glacial Maximum (the LGM Tropical Terrestrial Data Synthesis) are summarised. Each has been used to evaluate simulations of Last Glacial Maximum (LGM: 21 calendar kyr BP) and/or mid-Holocene (6 cal. kyr BP) environments. Comparisons have demonstrated that changes in radiative forcing and orography due to orbital and ice-sheet variations explain the first-order, broad-scale (in space and time) features of global climate change since the LGM. However, atmospheric models forced by 6 cal. kyr BP orbital changes with unchanged surface conditions fail to capture quantitative aspects of the observed climate, including the greatly increased magnitude and northward shift of the African monsoon during the early to mid-Holocene. Similarly, comparisons with palaeoenvironmental datasets show that atmospheric models have underestimated the magnitude of cooling and drying of much of the land surface at the LGM. The inclusion of feedbacks due to changes in ocean- and land-surface conditions at both times, and atmospheric dust loading at the LGM, appears to be required in order to produce a better simulation of these past climates. The development of Earth system models incorporating the dynamic interactions among ocean, atmosphere, and vegetation is therefore mandated by Quaternary science results as well as climatological principles. For greatest scientific benefit, this development must be paralleled by continued advances in palaeodata analysis and synthesis, which in turn will help to define questions that call for new focused data collection efforts.
Resumo:
Amplified Arctic warming is expected to have a significant longterm influence on the midlatitude atmospheric circulation by the latter half of the 21st century. Potential influences of recent and near future Arctic changes on shorter timescales are much less clear, despite having received much recent attention in the literature. In this letter, climate models from the recent CMIP5 experiment are analysed for evidence of an influence of Arctic temperatures on midlatitude blocking and cold European winters in particular. The focus is on the variability of these features in detrended data and, in contrast to other studies, limited evidence of an influence is found. The occurrence of cold European winters is found to be largely independent of the temperature variability in the key Barents–Kara Sea region. Positive correlations of the Barents–Kara temperatures with Eurasian blocking are found in some models, but significant correlations are limited.
Resumo:
With the prospect of exascale computing, computational methods requiring only local data become especially attractive. Consequently, the typical domain decomposition of atmospheric models means horizontally-explicit vertically-implicit (HEVI) time-stepping schemes warrant further attention. In this analysis, Runge-Kutta implicit-explicit schemes from the literature are analysed for their stability and accuracy using a von Neumann stability analysis of two linear systems. Attention is paid to the numerical phase to indicate the behaviour of phase and group velocities. Where the analysis is tractable, analytically derived expressions are considered. For more complicated cases, amplification factors have been numerically generated and the associated amplitudes and phase diagnosed. Analysis of a system describing acoustic waves has necessitated attributing the three resultant eigenvalues to the three physical modes of the system. To do so, a series of algorithms has been devised to track the eigenvalues across the frequency space. The result enables analysis of whether the schemes exactly preserve the non-divergent mode; and whether there is evidence of spurious reversal in the direction of group velocities or asymmetry in the damping for the pair of acoustic modes. Frequency ranges that span next-generation high-resolution weather models to coarse-resolution climate models are considered; and a comparison is made of errors accumulated from multiple stability-constrained shorter time-steps from the HEVI scheme with a single integration from a fully implicit scheme over the same time interval. Two schemes, “Trap2(2,3,2)” and “UJ3(1,3,2)”, both already used in atmospheric models, are identified as offering consistently good stability and representation of phase across all the analyses. Furthermore, according to a simple measure of computational cost, “Trap2(2,3,2)” is the least expensive.