272 resultados para Quasi-particle Scattering
Resumo:
The Eyjafjallajökull volcano in Iceland emitted a cloud of ash into the atmosphere during April and May 2010. Over the UK the ash cloud was observed by the FAAM BAe-146 Atmospheric Research Aircraft which was equipped with in-situ probes measuring the concentration of volcanic ash carried by particles of varying sizes. The UK Met Office Numerical Atmospheric-dispersion Modelling Environment (NAME) has been used to simulate the evolution of the ash cloud emitted by the Eyjafjallajökull volcano during the period 4–18 May 2010. In the NAME simulations the processes controlling the evolution of the concentration and particle size distribution include sedimentation and deposition of particles, horizontal dispersion and vertical wind shear. For travel times between 24 and 72 h, a 1/t relationship describes the evolution of the concentration at the centre of the ash cloud and the particle size distribution remains fairly constant. Although NAME does not represent the effects of microphysical processes, it can capture the observed decrease in concentration with travel time in this period. This suggests that, for this eruption, microphysical processes play a small role in determining the evolution of the distal ash cloud. Quantitative comparison with observations shows that NAME can simulate the observed column-integrated mass if around 4% of the total emitted mass is assumed to be transported as far as the UK by small particles (< 30 μm diameter). NAME can also simulate the observed particle size distribution if a distal particle size distribution that contains a large fraction of < 10 μm diameter particles is used, consistent with the idea that phraetomagmatic volcanoes, such as Eyjafjallajökull, emit very fine particles.
Resumo:
Flooding is a particular hazard in urban areas worldwide due to the increased risks to life and property in these regions. Synthetic Aperture Radar (SAR) sensors are often used to image flooding because of their all-weather day-night capability, and now possess sufficient resolution to image urban flooding. The flood extents extracted from the images may be used for flood relief management and improved urban flood inundation modelling. A difficulty with using SAR for urban flood detection is that, due to its side-looking nature, substantial areas of urban ground surface may not be visible to the SAR due to radar layover and shadow caused by buildings and taller vegetation. This paper investigates whether urban flooding can be detected in layover regions (where flooding may not normally be apparent) using double scattering between the (possibly flooded) ground surface and the walls of adjacent buildings. The method estimates double scattering strengths using a SAR image in conjunction with a high resolution LiDAR (Light Detection and Ranging) height map of the urban area. A SAR simulator is applied to the LiDAR data to generate maps of layover and shadow, and estimate the positions of double scattering curves in the SAR image. Observations of double scattering strengths were compared to the predictions from an electromagnetic scattering model, for both the case of a single image containing flooding, and a change detection case in which the flooded image was compared to an un-flooded image of the same area acquired with the same radar parameters. The method proved successful in detecting double scattering due to flooding in the single-image case, for which flooded double scattering curves were detected with 100% classification accuracy (albeit using a small sample set) and un-flooded curves with 91% classification accuracy. The same measures of success were achieved using change detection between flooded and un-flooded images. Depending on the particular flooding situation, the method could lead to improved detection of flooding in urban areas.
Resumo:
Lipid cubic phases are complex nanostructures that form naturally in a variety of biological systems, with applications including drug delivery and nanotemplating. Most X-ray scattering studies on lipid cubic phases have used unoriented polydomain samples as either bulk gels or suspensions of micrometer-sized cubosomes. We present a method of investigating cubic phases in a new form, as supported thin films that can be analyzed using grazing incidence small-angle X-ray scattering (GISAXS). We present GISAXS data on three lipid systems: phytantriol and two grades of monoolein (research and industrial). The use of thin films brings a number of advantages. First, the samples exhibit a high degree of uniaxial orientation about the substrate normal. Second, the new morphology allows precise control of the substrate mesophase geometry and lattice parameter using a controlled temperature and humidity environment, and we demonstrate the controllable formation of oriented diamond and gyroid inverse bicontinuous cubic along with lamellar phases. Finally, the thin film morphology allows the induction of reversible phase transitions between these mesophase structures by changes in humidity on subminute time scales, and we present timeresolved GISAXS data monitoring these transformations.
Resumo:
Particle filters are fully non-linear data assimilation techniques that aim to represent the probability distribution of the model state given the observations (the posterior) by a number of particles. In high-dimensional geophysical applications the number of particles required by the sequential importance resampling (SIR) particle filter in order to capture the high probability region of the posterior, is too large to make them usable. However particle filters can be formulated using proposal densities, which gives greater freedom in how particles are sampled and allows for a much smaller number of particles. Here a particle filter is presented which uses the proposal density to ensure that all particles end up in the high probability region of the posterior probability density function. This gives rise to the possibility of non-linear data assimilation in large dimensional systems. The particle filter formulation is compared to the optimal proposal density particle filter and the implicit particle filter, both of which also utilise a proposal density. We show that when observations are available every time step, both schemes will be degenerate when the number of independent observations is large, unlike the new scheme. The sensitivity of the new scheme to its parameter values is explored theoretically and demonstrated using the Lorenz (1963) model.
Resumo:
Airborne dust affects the Earth's energy balance — an impact that is measured in terms of the implied change in net radiation (or radiative forcing, in W m-2) at the top of the atmosphere. There remains considerable uncertainty in the magnitude and sign of direct forcing by airborne dust under current climate. Much of this uncertainty stems from simplified assumptions about mineral dust-particle size, composition and shape, which are applied in remote sensing retrievals of dust characteristics and dust-cycle models. Improved estimates of direct radiative forcing by dust will require improved characterization of the spatial variability in particle characteristics to provide reliable information dust optical properties. This includes constraints on: (1) particle-size distribution, including discrimination of particle subpopulations and quantification of the amount of dust in the sub-10 µm to <0.1 µm mass fraction; (2) particle composition, specifically the abundance of iron oxides, and whether particles consist of single or multi-mineral grains; (3) particle shape, including degree of sphericity and surface roughness, as a function of size and mineralogy; and (4) the degree to which dust particles are aggregated together. The use of techniques that measure the size, composition and shape of individual particles will provide a better basis for optical modelling.
Resumo:
The interannual variability of the stratospheric winter polar vortex is correlated with the phase of the quasi-biennial oscillation (QBO) of tropical stratospheric winds. This dynamical coupling between high and low latitudes, often referred to as the Holton–Tan effect, has been the subject of numerous observational and modelling studies, yet important questions regarding its mechanism remain unanswered. In particular it remains unclear which vertical levels of the QBO exert the strongest influence on the winter polar vortex, and how QBO–vortex coupling interacts with the effects of other sources of atmospheric interannual variability such as the 11-year solar cycle or the El Nino Southern Oscillation. As stratosphere-resolving general circulation models begin to resolve the QBO and represent its teleconnections with other parts of the climate system, it seems timely to summarize what is currently known about the QBO’s high-latitude influence. In this review article, we offer a synthesis of the modelling and observational analyses of QBO–vortex coupling that have appeared in the literature, and update the observational record.
Resumo:
Using 1D Vlasov drift-kinetic computer simulations, it is shown that electron trapping in long period standing shear Alfven waves (SAWs) provides an efficient energy sink for wave energy that is much more effective than Landau damping. It is also suggested that the plasma environment of low altitude auroral-zone geomagnetic field lines is more suited to electron acceleration by inertial or kinetic scale Alfven waves. This is due to the self-consistent response of the electron distribution function to SAWs, which must accommodate the low altitude large-scale current system in standing waves. We characterize these effects in terms of the relative magnitude of the wave phase and electron thermal velocities. While particle trapping is shown to be significant across a wide range of plasma temperatures and wave frequencies, we find that electron beam formation in long period waves is more effective in relatively cold plasma.
Resumo:
Bulk polycrystalline samples in the series Ti1+xS2 (x = 0 to 0.05) were prepared using high temperature synthesis from the elements and spark plasma sintering. X-ray structure analysis shows that the lattice constant c expands as titanium intercalates between TiS2 slabs. For x=0, a Seebeck coefficient close to -300 μV/K is observed for the first time in TiS2 compounds. The decrease in electrical resistivity and Seebeck coefficient that occurs upon Ti intercalation (Ti off stoichiometry) supports the view that charge carrier transfer to the Ti 3d band takes place and the carrier concentration increases. At the same time, the thermal conductivity is reduced by phonon scattering due to structural disorder induced by Ti intercalation. Optimum ZT values of 0.14 and 0.48 at 300K and 700K, respectively, are obtained for x=0.025.
Resumo:
In this paper we propose and analyse a hybrid numerical-asymptotic boundary element method for the solution of problems of high frequency acoustic scattering by a class of sound-soft nonconvex polygons. The approximation space is enriched with carefully chosen oscillatory basis functions; these are selected via a study of the high frequency asymptotic behaviour of the solution. We demonstrate via a rigorous error analysis, supported by numerical examples, that to achieve any desired accuracy it is sufficient for the number of degrees of freedom to grow only in proportion to the logarithm of the frequency as the frequency increases, in contrast to the at least linear growth required by conventional methods. This appears to be the first such numerical analysis result for any problem of scattering by a nonconvex obstacle. Our analysis is based on new frequency-explicit bounds on the normal derivative of the solution on the boundary and on its analytic continuation into the complex plane.
Resumo:
The structure of a ferrofluid under the influence of an external magnetic field is expected to become anisotropic due to the alignment of the dipoles into the direction of the external field, and subsequently to the formation of particle chains due to the attractive head to tail orientations of the ferrofluid particles. Knowledge about the structure of a colloidal ferrofluid can be inferred from scattering data via the measurement of structure factors. We have used molecular-dynamics simulations to investigate the structure of both monodispersed and polydispersed ferrofluids. The results for the isotropic structure factor for monodispersed samples are similar to previous data by Camp and Patey that were obtained using an alternative Monte Carlo simulation technique, but in a different parameter region. Here we look in addition at bidispersed samples and compute the anisotropic structure factor by projecting the q vector onto the XY and XZ planes separately, when the magnetic field was applied along the z axis. We observe that the XY- plane structure factor as well as the pair distribution functions are quite different from those obtained for the XZ plane. Further, the two- dimensional structure factor patterns are investigated for both monodispersed and bidispersed samples under different conditions. In addition, we look at the scaling exponents of structure factors. Our results should be of value to interpret scattering data on ferrofluids obtained under the influence of an external field.
Resumo:
We propose and analyse a hybrid numerical–asymptotic hp boundary element method (BEM) for time-harmonic scattering of an incident plane wave by an arbitrary collinear array of sound-soft two-dimensional screens. Our method uses an approximation space enriched with oscillatory basis functions, chosen to capture the high-frequency asymptotics of the solution. We provide a rigorous frequency-explicit error analysis which proves that the method converges exponentially as the number of degrees of freedom N increases, and that to achieve any desired accuracy it is sufficient to increase N in proportion to the square of the logarithm of the frequency as the frequency increases (standard BEMs require N to increase at least linearly with frequency to retain accuracy). Our numerical results suggest that fixed accuracy can in fact be achieved at arbitrarily high frequencies with a frequency-independent computational cost, when the oscillatory integrals required for implementation are computed using Filon quadrature. We also show how our method can be applied to the complementary ‘breakwater’ problem of propagation through an aperture in an infinite sound-hard screen.
Resumo:
New in-situ aircraft measurements of Saharan dust originating from Mali, Mauritania and Algeria taken during the Fennec 2011 aircraft campaign over a remote part of the Sahara Desert are presented. Size distributions extending to 300 μm are shown, representing measurements extending further into the coarse mode than previously published for airborne Saharan dust. A significant coarse mode was present in the size distribution measurements with effective diameter (deff) from 2.3 to 19.4 μm and coarse mode volume median diameter (dvc) from 5.8 to 45.3 μm. The mean size distribution had a larger relative proportion of coarse mode particles than previous aircraft measurements. The largest particles (with deff >12 μm, or dvc >25 μm) were only encountered within 1 km of the ground. Number concentration, mass loading and extinction coefficient showed inverse relationships to dust age since uplift. Dust particle size showed a weak exponential relationship to dust age. Two cases of freshly uplifted dust showed quite different characteristics of size distribution and number concentration. Single Scattering Albed (SSA) values at 550 nm calculated from the measured size distributions revealed high absorption ranging from 0.70 to 0.97 depending on the refractive index. SSA was found to be strongly related to deff. New instrumentation revealed that direct measurements, behind Rosemount inlets, overestimate SSA by up to 0.11 when deff is greater than 2 μm. This is caused by aircraft inlet inefficiencies and sampling losses. Previous measurements of SSA from aircraft measurements may also have been overestimates for this reason. Radiative transfer calculations indicate that the range of SSAs during Fennec 2011 can lead to underestimates in shortwave atmospheric heating rates by 2.0 to 3.0 times if the coarse mode is neglected. This will have an impact on Saharan atmospheric dynamics and circulation,which should be taken into account by numerical weather prediction and climate models.
Resumo:
Saharan dust affects the climate by altering the radiation balance and by depositing minerals to the Atlantic Ocean. Both are dependent on particle size. We present aircraft measurements comprising 42 profiles of size distribution (0.1–300 µm), representing freshly uplifted dust, regional aged dust, and dust in the Saharan Air Layer (SAL) over the Canary Islands. The mean effective diameter of dust in SAL profiles is 4.5 µm smaller than that in freshly uplifted dust, while the vertical structure changes from a low shallow layer (0–1.5 km) to a well-mixed deep Saharan dust layer (0–5 km). Size distributions show a loss of 60 to 90% of particles larger than 30 µm 12 h after uplift. The single scattering albedo (SSA) increases from 0.92 to 0.94 to 0.95 between fresh, aged, and SAL profiles: this is enough to alter heating rates by 26%. Some fresh dust close to the surface shows SSA as low as 0.85
Resumo:
Scattering and absorption by aerosol in anthropogenically perturbed air masses over Europe has been measured using instrumentation flown on the UK’s BAe-146-301 large Atmospheric Research Aircraft (ARA) operated by the Facility for Airborne Atmospheric Measurements (FAAM) on 14 flights during the EUCAARI-LONGREX campaign in May 2008. The geographical and temporal variations of the derived shortwave optical properties of aerosol are presented. Values of single scattering albedo of dry aerosol at 550 nm varied considerably from 0.86 to near unity, with a campaign average of 0.93 ± 0.03. Dry aerosol optical depths ranged from 0.030 ± 0.009 to 0.24 ± 0.07. An optical properties closure study comparing calculations from composition data and Mie scattering code with the measured properties is presented. Agreement to within measurement uncertainties of 30% can be achieved for both scattering and absorption,but the latter is shown to be sensitive to the refractive indices chosen for organic aerosols, and to a lesser extent black carbon, as well as being highly dependent on the accuracy of the absorption measurements. Agreement with the measured absorption can be achieved either if organic carbon is assumed to be weakly absorbing, or if the organic aerosol is purely scattering and the absorption measurement is an overestimate due to the presence of large amounts of organic carbon. Refractive indices could not be inferred conclusively due to this uncertainty, despite the enhancement in methodology compared to previous studies that derived from the use of the black carbon measurements. Hygroscopic growth curves derived from the wet nephelometer indicate moderate water uptake by the aerosol with a campaign mean f (RH) value (ratio in scattering) of 1.5 (range from 1.23 to 1.63) at 80% relative humidity. This value is qualitatively consistent with the major chemical components of the aerosol measured by the aerosol mass spectrometer, which are primarily mixed organics and nitrate and some sulphate.