227 resultados para Ice -- Manufacture
Resumo:
Considering the sea ice decline in the Arctic during the last decades, polynyas are of high research interest since these features are core areas of new ice formation. The determination of ice formation requires accurate retrieval of polynya area and thin-ice thickness (TIT) distribution within the polynya.We use an established energy balance model to derive TITs with MODIS ice surface temperatures (Ts) and NCEP/DOE Reanalysis II in the Laptev Sea for two winter seasons. Improvements of the algorithm mainly concern the implementation of an iterative approach to calculate the atmospheric flux components taking the atmospheric stratification into account. Furthermore, a sensitivity study is performed to analyze the errors of the ice thickness. The results are the following: 1) 2-m air temperatures (Ta) and Ts have the highest impact on the retrieved ice thickness; 2) an overestimation of Ta yields smaller ice thickness errors as an underestimation of Ta; 3) NCEP Ta shows often a warm bias; and 4) the mean absolute error for ice thicknesses up to 20 cm is ±4.7 cm. Based on these results, we conclude that, despite the shortcomings of the NCEP data (coarse spatial resolution and no polynyas), this data set is appropriate in combination with MODIS Ts for the retrieval of TITs up to 20 cm in the Laptev Sea region. The TIT algorithm can be applied to other polynya regions and to past and future time periods. Our TIT product is a valuable data set for verification of other model and remote sensing ice thickness data.
Resumo:
Skillful sea ice forecasts from days to years ahead are becoming increasingly important for the operation and planning of human activities in the Arctic. Here we analyze the potential predictability of the Arctic sea ice edge in six climate models. We introduce the integrated ice-edge error (IIEE), a user-relevant verification metric defined as the area where the forecast and the “truth” disagree on the ice concentration being above or below 15%. The IIEE lends itself to decomposition into an absolute extent error, corresponding to the common sea ice extent error, and a misplacement error. We find that the often-neglected misplacement error makes up more than half of the climatological IIEE. In idealized forecast ensembles initialized on 1 July, the IIEE grows faster than the absolute extent error. This means that the Arctic sea ice edge is less predictable than sea ice extent, particularly in September, with implications for the potential skill of end-user relevant forecasts.