258 resultados para Climate signal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the major uncertainties in the ability to predict future climate change, and hence its impacts, is the lack of knowledge of the earth's climate sensitivity. Here, data are combined from the 1985-96 Earth Radiation Budget Experiment (ERBE) with surface temperature change information and estimates of radiative forcing to diagnose the climate sensitivity. Importantly, the estimate is completely independent of climate model results. A climate feedback parameter of 2.3 +/- 1.4 W m(-2) K-1 is found. This corresponds to a 1.0-4.1-K range for the equilibrium warming due to a doubling of carbon dioxide (assuming Gaussian errors in observable parameters, which is approximately equivalent to a uniform "prior" in feedback parameter). The uncertainty range is due to a combination of the short time period for the analysis as well as uncertainties in the surface temperature time series and radiative forcing time series, mostly the former. Radiative forcings may not all be fully accounted for; however, all argument is presented that the estimate of climate sensitivity is still likely to be representative of longer-term climate change. The methodology can be used to 1) retrieve shortwave and longwave components of climate feedback and 2) suggest clear-sky and cloud feedback terms. There is preliminary evidence of a neutral or even negative longwave feedback in the observations, suggesting that current climate models may not be representing some processes correctly if they give a net positive longwave feedback.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Empirical orthogonal functions (EOFs) are widely used in climate research to identify dominant patterns of variability and to reduce the dimensionality of climate data. EOFs, however, can be difficult to interpret. Rotated empirical orthogonal functions (REOFs) have been proposed as more physical entities with simpler patterns than EOFs. This study presents a new approach for finding climate patterns with simple structures that overcomes the problems encountered with rotation. The method achieves simplicity of the patterns by using the main properties of EOFs and REOFs simultaneously. Orthogonal patterns that maximise variance subject to a constraint that induces a form of simplicity are found. The simplified empirical orthogonal function (SEOF) patterns, being more 'local'. are constrained to have zero loadings outside the main centre of action. The method is applied to winter Northern Hemisphere (NH) monthly mean sea level pressure (SLP) reanalyses over the period 1948-2000. The 'simplified' leading patterns of variability are identified and compared to the leading patterns obtained from EOFs and REOFs. Copyright (C) 2005 Royal Meteorological Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[ 1] We have used a fully coupled chemistry-climate model (CCM), which generates its own wind and temperature quasi-biennial oscillation (QBO), to study the effect of coupling on the QBO and to examine the QBO signals in stratospheric trace gases, particularly ozone. Radiative coupling of the interactive chemistry to the underlying general circulation model tends to prolong the QBO period and to increase the QBO amplitude in the equatorial zonal wind in the lower and middle stratosphere. The model ozone QBO agrees well with Stratospheric Aerosol and Gas Experiment II and Total Ozone Mapping Spectrometer satellite observations in terms of vertical and latitudinal structure. The model captures the ozone QBO phase change near 28 km over the equator and the column phase change near +/- 15 degrees latitude. Diagnosis of the model chemical terms shows that variations in NOx are the main chemical driver of the O-3 QBO around 35 km, i.e., above the O-3 phase change.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[ 1] There has been a paucity of information on trends in daily climate and climate extremes, especially from developing countries. We report the results of the analysis of daily temperature ( maximum and minimum) and precipitation data from 14 south and west African countries over the period 1961 - 2000. Data were subject to quality control and processing into indices of climate extremes for release to the global community. Temperature extremes show patterns consistent with warming over most of the regions analyzed, with a large proportion of stations showing statistically significant trends for all temperature indices. Over 1961 to 2000, the regionally averaged occurrence of extreme cold ( fifth percentile) days and nights has decreased by - 3.7 and - 6.0 days/decade, respectively. Over the same period, the occurrence of extreme hot (95th percentile) days and nights has increased by 8.2 and 8.6 days/decade, respectively. The average duration of warm ( cold) has increased ( decreased) by 2.4 (0.5) days/decade and warm spells. Overall, it appears that the hot tails of the distributions of daily maximum temperature have changed more than the cold tails; for minimum temperatures, hot tails show greater changes in the NW of the region, while cold tails have changed more in the SE and east. The diurnal temperature range (DTR) does not exhibit a consistent trend across the region, with many neighboring stations showing opposite trends. However, the DTR shows consistent increases in a zone across Namibia, Botswana, Zambia, and Mozambique, coinciding with more rapid increases in maximum temperature than minimum temperature extremes. Most precipitation indices do not exhibit consistent or statistically significant trends across the region. Regionally averaged total precipitation has decreased but is not statistically significant. At the same time, there has been a statistically significant increase in regionally averaged daily rainfall intensity and dry spell duration. While the majority of stations also show increasing trends for these two indices, only a few of these are statistically significant. There are increasing trends in regionally averaged rainfall on extreme precipitation days and in maximum annual 5-day and 1-day rainfall, but only trends for the latter are statistically significant.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[ 1] A rapid increase in the variety, quality, and quantity of observations in polar regions is leading to a significant improvement in the understanding of sea ice dynamic and thermodynamic processes and their representation in global climate models. We assess the simulation of sea ice in the new Hadley Centre Global Environmental Model (HadGEM1) against the latest available observations. The HadGEM1 sea ice component uses elastic-viscous-plastic dynamics, multiple ice thickness categories, and zero-layer thermodynamics. The model evaluation is focused on the mean state of the key variables of ice concentration, thickness, velocity, and albedo. The model shows good agreement with observational data sets. The variability of the ice forced by the North Atlantic Oscillation is also found to agree with observations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sea level changes resulting from CO2-induced climate changes in ocean density and circulation have been investigated in a series of idealised experiments with the Hadley Centre HadCM3 AOGCM. Changes in the mass of the ocean were not included. In the global mean, salinity changes have a negligible effect compared with the thermal expansion of the ocean. Regionally, sea level changes are projected to deviate greatly from the global mean (standard deviation is 40% of the mean). Changes in surface fluxes of heat, freshwater and wind stress are all found to produce significant and distinct regional sea level changes, wind stress changes being the most important and the cause of several pronounced local features, while heat and freshwater flux changes affect large parts of the North Atlantic and Southern Ocean. Regional change is related mainly to density changes, with a relatively small contribution in mid and high latitudes from change in the barotropic circulation. Regional density change has an important contribution from redistribution of ocean heat content. In general, unlike in the global mean, the regional pattern of sea level change due to density change appears to be influenced almost as much by salinity changes as by temperature changes, often in opposition. Such compensation is particularly marked in the North Atlantic, where it is consistent with recent observed changes. We suggest that density compensation is not a property of climate change specifically, but a general behavior of the ocean.