349 resultados para CLIMATE-CHANGE


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present an assessment of how tropical cyclone activity might change due to the influence of increased atmospheric carbon dioxide concentrations, using the UK’s High Resolution Global Environment Model (HiGEM) with N144 resolution (~90 km in the atmosphere and ~40 km in the ocean). Tropical cyclones are identified using a feature tracking algorithm applied to model output. Tropical cyclones from idealized 30-year 2×CO2 (2CO2) and 4×CO2 (4CO2) simulations are compared to those identified in a 150-year present-day simulation, which is separated into a 5-member ensemble of 30-year integrations. Tropical cyclones are shown to decrease in frequency globally by 9% in the 2CO2 and 26% in the 4CO2. Tropical cyclones only become more intese in the 4CO2, however uncoupled time slice experiments reveal an increase in intensity in the 2CO2. An investigation into the large-scale environmental conditions, known to influence tropical cyclone activity in the main development regions, is used to determine the response of tropical cyclone activity to increased atmospheric CO2. A weaker Walker circulation and a reduction in zonally averaged regions of updrafts lead to a shift in the location of tropical cyclones in the northern hemisphere. A decrease in mean ascent at 500 hPa contributes to the reduction of tropical cyclones in the 2CO2 in most basins. The larger reduction of tropical cyclones in the 4CO2 arises from further reduction of mean ascent at 500 hPa and a large enhancement of vertical wind shear, especially in the southern hemisphere, North Atlantic and North East Pacific.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose – This paper aims to explore the nature of the emerging discourse of private climate change reporting, which takes place in one-on-one meetings between institutional investors and their investee companies. Design/methodology/approach – Semi-structured interviews were conducted with representatives from 20 UK investment institutions to derive data which was then coded and analysed, in order to derive a picture of the emerging discourse of private climate change reporting, using an interpretive methodological approach, in addition to explorative analysis using NVivo software. Findings – The authors find that private climate change reporting is dominated by a discourse of risk and risk management. This emerging risk discourse derives from institutional investors' belief that climate change represents a material risk, that it is the most salient sustainability issue, and that their clients require them to manage climate change-related risk within their portfolio investment. It is found that institutional investors are using the private reporting process to compensate for the acknowledged inadequacies of public climate change reporting. Contrary to evidence indicating corporate capture of public sustainability reporting, these findings suggest that the emerging private climate change reporting discourse is being captured by the institutional investment community. There is also evidence of an emerging discourse of opportunity in private climate change reporting as the institutional investors are increasingly aware of a range of ways in which climate change presents material opportunities for their investee companies to exploit. Lastly, the authors find an absence of any ethical discourse, such that private climate change reporting reinforces rather than challenges the “business case” status quo. Originality/value – Although there is a wealth of sustainability reporting research, there is no academic research on private climate change reporting. This paper attempts to fill this gap by providing rich interview evidence regarding the nature of the emerging private climate change reporting discourse.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Climate change as a global problem has moved relatively swiftly into high profile political debates over the last 20 years or so, with a concomitant diffusion from the natural sciences into the social sciences. The study of the human dimensions of climate change has been growing in momentum through research which attempts to describe, evaluate, quantify and model perceptions of climate change, understand more about risk and assess the construction of policy. Cultural geographers’ concerns with the construction of knowledge, the workings of social relations in space and the politics and poetics of place-based identities provide a lens through which personal, collective and institutional responses to climate change can be evaluated using critical and interpretative methodologies. Adopting a cultural geography approach, this paper examines how climate change as a particular environmental discourse is constructed through memory, observation and conversation, as well as materialised in farming practices on the Lizard Peninsula, Cornwall, UK

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we show how a seemingly unremarkable object – a cattle grid – has come to presence climate change in partial and contingent ways on the Lizard Peninsula, Cornwall, UK. We identify the cattle grid as an ‘anticipatory object’ through which conservation organisations seek to manage the future and adapt to climate change, but which at the same time presences that unthought-of future for others in the landscape. We explore the ways in which the cattle grid acts to presence something that is not only absent – climate change – but has uncertain imminence. We investigate the ways in which the cattle grid make climate relevant as an embodied and experiential process, a physical and intellectual artefact, and the means to imagine climate and the ways it might change. Drawing upon interpretative approaches informed by theorisations of materiality, presence and absence to understand climate change as a social phenomenon, we go beyond a consideration of this ordinary object defined by its function to consider how the object is experienced, the processes and practices through which people relate to it, and the ways in which social meaning accumulates around it. The empirical basis for this argument is provided by in-depth interviews with local representatives of Natural England, residents and farmers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The scientific community is developing new global, regional, and sectoral scenarios to facilitate interdisciplinary research and assessment to explore the range of possible future climates and related physical changes that could pose risks to human and natural systems; how these changes could interact with social, economic, and environmental development pathways; the degree to which mitigation and adaptation policies can avoid and reduce risks; the costs and benefits of various policy mixes; residual impacts under alternative pathways; and the relationship of future climate change and adaptation and mitigation policy responses with sustainable development. This paper provides the background to and process of developing the conceptual framework for these scenarios, as described in the three subsequent papers in this Special Issue (Van Vuuren et al.; O’Neill et al.; Kriegler et al.). The paper also discusses research needs to further develop and apply this framework. A key goal of the current framework design and its future development is to facilitate the collaboration of climate change researchers from a broad range of perspectives and disciplines to develop policy- and decision-relevant scenarios and explore the challenges and opportunities human and natural systems could face with additional climate change.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a global scale assessment of the impact of climate change on water scarcity. Patterns of climate change from 21 Global Climate Models (GCMs) under four SRES scenarios are applied to a global hydrological model to estimate water resources across 1339 watersheds. The Water Crowding Index (WCI) and the Water Stress Index (WSI) are used to calculate exposure to increases and decreases in global water scarcity due to climate change. 1.6 (WCI) and 2.4 (WSI) billion people are estimated to be currently living within watersheds exposed to water scarcity. Using the WCI, by 2050 under the A1B scenario, 0.5 to 3.1 billion people are exposed to an increase in water scarcity due to climate change (range across 21 GCMs). This represents a higher upper-estimate than previous assessments because scenarios are constructed from a wider range of GCMs. A substantial proportion of the uncertainty in the global-scale effect of climate change on water scarcity is due to uncertainty in the estimates for South Asia and East Asia. Sensitivity to the WCI and WSI thresholds that define water scarcity can be comparable to the sensitivity to climate change pattern. More of the world will see an increase in exposure to water scarcity than a decrease due to climate change but this is not consistent across all climate change patterns. Additionally, investigation of the effects of a set of prescribed global mean temperature change scenarios show rapid increases in water scarcity due to climate change across many regions of the globe, up to 2°C, followed by stabilisation to 4°C.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a preliminary assessment of the relative effects of rate of climate change (four Representative Concentration Pathways - RCPs), assumed future population (five Shared Socio-economic Pathways - SSPs), and pattern of climate change (19 CMIP5 climate models) on regional and global exposure to water resources stress and river flooding. Uncertainty in projected future impacts of climate change on exposure to water stress and river flooding is dominated by uncertainty in the projected spatial and seasonal pattern of change in climate. There is little clear difference in impact between RCP2.6, RCP4.5 and RCP6.0 in 2050, and between RCP4.5 and RCP6.0 in 2080. Impacts under RCP8.5 are greater than under the other RCPs in 2050 and 2080. For a given RCP, there is a difference in the absolute numbers of people exposed to increased water resources stress or increased river flood frequency between the five SSPs. With the ‘middle-of-the-road’ SSP2, climate change by 2050 would increase exposure to water resources stress for between approximately 920 and 3400 million people under the highest RCP, and increase exposure to river flood risk for between 100 and 580 million people. Under RCP2.6, exposure to increased water scarcity would be reduced in 2050 by 22-24%, compared to impacts under the RCP8.5, and exposure to increased flood frequency would be reduced by around 16%. The implications of climate change for actual future losses and adaptation depend not only on the numbers of people exposed to changes in risk, but also on the qualitative characteristics of future worlds as described in the different SSPs. The difference in ‘actual’ impact between SSPs will therefore be greater than the differences in numbers of people exposed to impact.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Future climate change projections are often derived from ensembles of simulations from multiple global circulation models using heuristic weighting schemes. This study provides a more rigorous justification for this by introducing a nested family of three simple analysis of variance frameworks. Statistical frameworks are essential in order to quantify the uncertainty associated with the estimate of the mean climate change response. The most general framework yields the “one model, one vote” weighting scheme often used in climate projection. However, a simpler additive framework is found to be preferable when the climate change response is not strongly model dependent. In such situations, the weighted multimodel mean may be interpreted as an estimate of the actual climate response, even in the presence of shared model biases. Statistical significance tests are derived to choose the most appropriate framework for specific multimodel ensemble data. The framework assumptions are explicit and can be checked using simple tests and graphical techniques. The frameworks can be used to test for evidence of nonzero climate response and to construct confidence intervals for the size of the response. The methodology is illustrated by application to North Atlantic storm track data from the Coupled Model Intercomparison Project phase 5 (CMIP5) multimodel ensemble. Despite large variations in the historical storm tracks, the cyclone frequency climate change response is not found to be model dependent over most of the region. This gives high confidence in the response estimates. Statistically significant decreases in cyclone frequency are found on the flanks of the North Atlantic storm track and in the Mediterranean basin.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aim  Species distribution models (SDMs) based on current species ranges underestimate the potential distribution when projected in time and/or space. A multi-temporal model calibration approach has been suggested as an alternative, and we evaluate this using 13,000 years of data. Location  Europe. Methods  We used fossil-based records of presence for Picea abies, Abies alba and Fagus sylvatica and six climatic variables for the period 13,000 to 1000 yr bp. To measure the contribution of each 1000-year time step to the total niche of each species (the niche measured by pooling all the data), we employed a principal components analysis (PCA) calibrated with data over the entire range of possible climates. Then we projected both the total niche and the partial niches from single time frames into the PCA space, and tested if the partial niches were more similar to the total niche than random. Using an ensemble forecasting approach, we calibrated SDMs for each time frame and for the pooled database. We projected each model to current climate and evaluated the results against current pollen data. We also projected all models into the future. Results  Niche similarity between the partial and the total-SDMs was almost always statistically significant and increased through time. SDMs calibrated from single time frames gave different results when projected to current climate, providing evidence of a change in the species realized niches through time. Moreover, they predicted limited climate suitability when compared with the total-SDMs. The same results were obtained when projected to future climates. Main conclusions  The realized climatic niche of species differed for current and future climates when SDMs were calibrated considering different past climates. Building the niche as an ensemble through time represents a way forward to a better understanding of a species' range and its ecology in a changing climate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The intention of this review is to place crop albedo biogeoengineering in the wider picture of climate manipulation. Crop biogeoengineering is considered within the context of the long-term modification of the land surface for agriculture over several thousand years. Biogeoengineering is also critiqued in relation to other geoengineering schemes in terms of mitigation power and adherence to social principles for geoengineering. Although its impact is small and regional, crop biogeoengineering could be a useful and inexpensive component of an ensemble of geoengineering schemes to provide temperature mitigation. The method should not detrimentally affect food security and there may even be positive impacts on crop productivity, although more laboratory and field research is required in this area to understand the underlying mechanisms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Centennial-scale records of sea-surface temperature and opal composition spanning the Last Glacial Maximum and Termination 1 (circa 25–6 ka) are presented here from Guaymas Basin in the Gulf of California. Through the application of two organic geochemistry proxies, the U37K′ index and the TEX86H index, we present evidence for rapid, stepped changes in temperatures during deglaciation. These occur in both temperature proxies at 13 ka (∼3°C increase in 270 years), 10.0 ka (∼2°C decrease over ∼250 years) and at 8.2 ka (3°C increase in <200 years). An additional rapid warming step is also observed in TEX86H at 11.5 ka. In comparing the two temperature proxies and opal content, we consider the potential for upwelling intensity to be recorded and link this millennial-scale variability to shifting Intertropical Convergence Zone position and variations in the strength of the Subtropical High. The onset of the deglacial warming from 17 to 18 ka is comparable to a “southern hemisphere” signal, although the opal record mimics the ice-rafting events of the north Atlantic (Heinrich events). Neither the modern seasonal cycle nor El Niño/Southern Oscillation patterns provide valid analogues for the trends we observe in comparison with other regional records. Fully coupled climate model simulations confirm this result, and in combination we question whether the seasonal or interannual climate variations of the modern climate are valid analogues for the glacial and deglacial tropical Pacific.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Climate change could potentially interrupt progress toward a world without hunger. A robust and coherent global pattern is discernible of the impacts of climate change on crop productivity that could have consequences for food availability. The stability of whole food systems may be at risk under climate change because of short-term variability in supply. However, the potential impact is less clear at regional scales, but it is likely that climate variability and change will exacerbate food insecurity in areas currently vulnerable to hunger and undernutrition. Likewise, it can be anticipated that food access and utilization will be affected indirectly via collateral effects on household and individual incomes, and food utilization could be impaired by loss of access to drinking water and damage to health. The evidence supports the need for considerable investment in adaptation and mitigation actions toward a “climate-smart food system” that is more resilient to climate change influences on food security.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cities and global climate change are closely linked: cities are where the bulk of greenhouse gas emissions take place through the consumption of fossil fuels; they are where an increasing proportion of the world’s people live; and they also generate their own climate – commonly characterized by the urban heat island. In this way, understanding the way cities affect the cycling of energy, water, and carbon to create an urban climate is a key element of climate mitigation and adaptation strategies, especially in the context of rising global temperatures and deteriorating air quality in many cities. As climate models resolve finer spatial-scales, they will need to represent those areas in which more than 50% of the world’s population already live to provide climate projections that are of greater use to planning and decision-making. Finally, many of the processes that are instrumental in determining urban climate are the same factors leading to global anthropogenic climate change, namely regional-scale land-use changes; increased energy use; and increased emissions of climatically-relevant atmospheric constituents. Cities are therefore both a case study for understanding, and an agent in mitigating, anthropogenic climate change. This chapter reviews and summarizes the current state of understanding of the physical basis of urban climates, as well as our ability to represent these in models. We argue that addressing the challenges of managing urban environments in a changing climate requires understanding the energy, water, and carbon balances for an urban landscape and, importantly, their interactions and feedbacks, together with their links to human behaviour and controls. We conclude with some suggestions for where further research is needed.