272 resultados para CASSINI RADAR
Resumo:
The altitude from which transient 630-nm (“red line”) light is emitted in transient dayside auroral breakup events is discussed. Theoretically, the emissions should normally originate from approximately 250 to 550 km. Because the luminosity in dayside breakup events moves in a way that is consistent with newly opened field lines, they have been interpreted as the ionospheric signatures of transient reconnection at the dayside magnetopause. For this model the importance of these events for convection can be assessed from the rate of change of their area. The area derived from analysis of images from an all-sky camera and meridian scans from a photometer, however, depends on the square of the assumed emission altitude. From field line mapping, it is shown for both a westward and an eastward moving event, that the main 557.7-nm emission comes from the edge of the 630 nm transient, where a flux transfer event model would place the upward field-aligned current (on the poleward and equatorward edge, respectively). The observing geometry for the two cases presented is such that this is true, irrespective of the 630-nm emission altitude. From comparisons with the European incoherent scatter radar data for the westward (interplanetary magnetic field By > 0) event on January 12, 1988, the 630-nm emission appears to emanate from an altitude of 250 km, and to be accompanied by some 557.7-nm “green-line” emission. However, for a large, eastward moving event observed on January 9, 1989, there is evidence that the emission altitude is considerably greater and, in this case, the only 557.7-nm emission is that on the equatorward edge of the event, consistent with a higher altitude 630-nm excitation source. Assuming an emission altitude of 250 km for this event yields a reconnection voltage of >50 kV during the reconnection burst but a contribution to the convection voltage of >15 kV. However, from the motion of the event we infer that the luminosity peaks at an altitude in the range of 400 and 500 km, and for the top of this range the reconnection and average convection voltages would be increased to >200 kV and >60 kV, respectively. (These are all minimum estimates because the event extends in longitude beyond the field-of-view of the camera). Hence the higher-emission altitude has a highly significant implication, namely that the reconnection bursts which cause the dayside breakup events could explain most of the voltage placed across the magnetosphere and polar cap by the solar wind flow. Analysis of the plasma density and temperatures during the event on January 9, 1989, predicts the required thermal excitation of significant 630-nm intensities at altitudes of 400-500 km.
Resumo:
The paper discusses how variations in the pattern of convective plasma flows should beincluded in self-consistent time-dependent models of the coupled ionosphere-thermosphere system. The author shows how these variations depend upon the mechanism by which the solar wind flow excites the convection. The modelling of these effects is not just of relevance to the polar ionosphere. This is because the influence of convection is not confined to high latitudes: the resultant heating and composition changes in the thermosphere are communicated to lower latitudes by the winds which are also greatly modified by the plasma convection. These thermospheric changes alter the global distribution of plasma by modulatingthe rates of the chemical reactions which areresponsible for the loss of plasma. Hence the modelling of these high-latitude processes is of relevanceto the design and operation of HF communication, radar and navigation systems worldwide.
Resumo:
The papers by Winser et al. [(1990) J. atmos. terr. Phys.52, 501] and Häggström and Collis [(1990) J. atmos. terr. Phys.52, 519] used plasma flows and ion temperatures, as measured by the EISCAT tristatic incoherent scatter radar, to investigate changes in the ion composition of the ionospheric F-layer at high latitudes, in response to increases in the speed of plasma convection. These studies reported that the ion composition rapidly changed from mainly O+ to almost completely (>90%) molecular ions, following rapid increases in ion drift speed by >1 km s−1. These changes appeared inconsisent with theoretical considerations of the ion chemistry, which could not account for the large fractions of molecular ions inferred from the obsevations. In this paper, we discuss two causes of this discrepancy. First, we reevaluate the theoretical calculations for chemical equilibrium and show that, if we correct the derived temperatures for the effect of the molecular ions, and if we employ more realistic dependences of the reaction rates on the ion temperature, the composition changes derived for the faster convection speeds can be explained. For the Winser et al. observations with the radar beam at an aspect angle of ϕ = 54.7° to the geomagnetic field, we now compute a change to 89% molecular ions in < 2 min, in response to the 3 km s−1 drift. This is broadly consistent with the observations. But for the two cases considered by Häggström and Collis, looking along the field line (ϕ = 0°), we compute the proportion of molecular ions to be only 4 and 16% for the observed plasma drifts of 1.2 and 1.6 km s−1, respectively. These computed proportions are much smaller than those derived experimentally (70 and 90%). We attribute the differences to the effects of non-Maxwellian, anisotropic ion velocity distribution functions. We also discuss the effect of ion composition changes on the various radar observations that report anisotropies of ion temperature.
Resumo:
THE plasma precipitating into the Earth's dayside auroral atmosphere has characteristics which show that it originates from the shocked solar-wind plasma of the magnetosheath1'2. The particles of the magnetosheath plasma precipitate down a funnel-shaped region (cusp) of open field lines resulting from reconnection of the geomagnetic field with the interplanetary magnetic field3. Although the cusp has long been considered a well defined spatial structure maintained by continuous reconnection, it has recently been suggested4–6 that reconnection instead may take place in a series of discontinuous events; this is the ‘pulsating cusp model’. Here we present coordinated radar and satellite observations of a series of discrete, poleward-moving plasma structures that are consistent with the pulsating-cusp model.
Resumo:
This review presents recent observations of high-latitude ionospheric plasma convection, obtained using the EISCAT radar in the 'Polar' experiment mode. The paper is divided into two main parts. Firstly, the delay in the response of dayside high-latitude flows to changes in the interplanetary magnetic field is discussed. The results show the importance for the excitation of dayside convection of the transfer of magnetic flux from the dayside into the tail lobe. Consequently, ionospheric convection should be thought of as the sum of two intrinsically time-dependent flow patterns. The first of these patterns is directly driven by solar wind-magnetosphere coupling, dominates ionospheric flows on the dayside, is associated with an expanding polar cap area and is the F-region flow equivalent of the DP-2 E-region current system. The second of the two patterns is driven by the release of energy stored in the geomagnetic tail, dominates ionospheric flows on the nightside, is associated with a contracting polar cap and is equivalent to the DP-1, or substorm, current system. In the second half of the paper, various transient flow bursts observed in the vicinity of the dayside cusp are studied. These radar data, combined with simultaneous optical observations of transient dayside aurorae, strongly suggest that momentum is transferred across the magnetopause and into the ionosphere in a series of bursts, each associated with voltages of 30-80 kV. Similarities between these bursts and flux transfer events observed at the magnetopause are discussed.
Resumo:
The implications of polar cap expansions, contractions and movements for empirical models of high-latitude plasma convection are examined. Some of these models have been generated by directly averaging flow measurements from large numbers of satellite passes or radar scans; others have employed more complex means to combine data taken at different times into large-scale patterns of flow. In all cases, the models have implicitly adopted the assumption that the polar cap is in steady state: they have all characterized the ionospheric flow in terms of the prevailing conditions (e.g. the interplanetary magnetic field and/or some index of terrestrial magnetic activity) without allowance for their history. On long enough time scales, the polar cap is indeed in steady state but on time scales shorter than a few hours it is not and can oscillate in size and position. As a result, the method used to combine the data can influence the nature of the convection reversal boundary and the transpolar voltage in the derived model. This paper discusses a variety of effects due to time-dependence in relation to some ionospheric convection models which are widely applied. The effects are shown to be varied and to depend upon the procedure adopted to compile the model.
Resumo:
Optical observations of a dayside auroral brightening sequence, by means of all-sky TV cameras and meridian scanning photometers, have been combined with EISCAT ion drift observations within the same invariant latitude-MLT sector. The observations were made during a January 1989 campaign by utilizing the high F region ion densities during the maximum phase of the solar cycle. The characteristic intermittent optical events, covering ∼300 km in east-west extent, move eastward (antisunward) along the poleward boundary of the persistent background aurora at velocities of ∼1.5 km s−1 and are associated with ion flows which swing from eastward to westward, with a subsequent return to eastward, during the interval of a few minutes when there is enhanced auroral emission within the radar field of view. The breakup of discrete auroral forms occurs at the reversal (negative potential) that forms between eastward plasma flow, maximizing near the persistent arc poleward boundary, and strong transient westward flow to the south. The reported events, covering a 35 min interval around 1400 MLT, are embedded within a longer period of similar auroral activity between 0830 (1200 MLT) and 1300 UT (1600 MLT). These observations are discussed in relation to recent models of boundary layer plasma dynamics and the associated magnetosphere-ionosphere coupling. The ionospheric events may correspond to large-scale wave like motions of the low-latitude boundary layer (LLBL)/plasma sheet (PS) boundary. On the basis of this interpretation the observed spot size, speed and repetition period (∼10 min) give a wavelength (the distance between spots) of ∼900 km in the present case. The events can also be explained as ionospheric signatures of newly opened flux tubes associated with reconnection bursts at the magnetopause near 1400 MLT. We also discuss these data in relation to random, patchy reconnection (as has recently been invoked to explain the presence of the sheathlike plasma on closed field lines in the LLBL). In view of the lack of IMF data, and the existing uncertainty on the location of the open-closed field line boundary relative to the optical events, an unambiguous discrimination between the different alternatives is not easily obtained.
Resumo:
On December 1, 1986 the ISEE 1 and 2 spacecraft pair passed through the dayside magnetopause at a location which mapped approximately to ionospheric field-line foot-points near the fields of view of the EISCAT radar and photometers and an all-sky camera on Svalbard. The magnetosheath magnetic field was southward and duskward at the time, and flux transfer events (FTEs) were observed at the ISEE location. At the same time, the EISCAT radar observed ionospheric flow bursts of up to 1 km s−1. The peak of each burst followed an FTE observation at ISEE by a few minutes. The bursts, each lasting ten or fifteen minutes, were comprised of first a westward then a poleward flow. An all-sky camera at Ny Ålesund observed dayside auroral breakup forms during or shortly after the flow bursts, moving westward then poleward. While these flow bursts and associated dayside auroral forms have been previously reported in association with southward IMF orientations, this is the first observation of a direct link to FTEs at the magnetopause. On this occasion, the lower limit on the inferred potential associated with the FTEs is roughly 10 kV. Their inferred east-west extent in the ionosphere ranges between 700 and 1000 km, corresponding to a 3 – 5 RE local time extent at the average magnetopause.
Resumo:
Combined optical and radar observations of two breakup-like auroral events near the polar cap boundary, within 74–76° MLAT and 1210 – 1240 UT (roughly 1540 – 1610 MLT) on 9 Jan. 1989 are reported. A two-component structure of the auroral phenomenon is indicated, with a local intensification of the pre-existing arc as well as a separate, tailward moving discrete auroral event on the poleward side of the background aurora, close to the reversal between well-defined zones of sunward and tailward ion flows. The all-sky TV observations do not indicate a connection between the two components, which also show different optical spectral composition. The 16 MLT background arc is located on sunward convecting field lines, as opposed to the 12–14 MLT auroral emission observed on this day. Although the magnetospheric plasma source (s) of the 16 MLT events are not easily identified from these ground-based data alone, it is suggested that the lower and higher latitude components, may map to the plasma sheet boundary layer and along open field lines to the magnetopause boundary, respectively. The events occur at the time of enhancements of westward ionospheric ion flow and corresponding eastward electrojet current south of 74° MLAT. Thus, they seem to be very significant events, involving periodic (10 min period), tailward moving filaments of field-aligned current/discrete auroral emission at the 16 MLT polar cap boundary.
Resumo:
Data are presented for a nighttime ion heating event observed by the EISCAT radar on 16 December 1988. In the experiment, the aspect angle between the radar beam and the geomagnetic field was fixed at 54.7°, which avoids any ambiguity in derived ion temperature caused by anisotropy in the ion velocity distribution function. The data were analyzed with an algorithm which takes account of the non-Maxwellian line-of-sight ion velocity distribution. During the heating event, the derived spectral distortion parameter (D∗) indicated that the distribution function was highly distorted from a Maxwellian form when the ion drift increased to 4 km s−1. The true three-dimensional ion temperature was used in the simplified ion balance equation to compute the ion mass during the heating event. The ion composition was found to change from predominantly O4 to mainly molecular ions. A theoretical analysis of the ion composition, using the MSIS86 model and published values of the chemical rate coefficients, accounts for the order-of-magnitude increase in the atomic/molecular ion ratio during the event, but does not successfully explain the very high proportion of molecular ions that was observed.
Resumo:
The generation of flow and current vortices in the dayside auroral ionosphere has been predicted for two processes ocurring at the dayside magnetopause. The first of these mechanisms is time-dependent magnetic reconnection, in “flux transfer events” (FTEs); the second is the action of solar wind dynamic pressure changes. The ionospheric flow signature of an FTE should be a twin vortex, with the mean flow velocity in the central region of the pattern equal to the velocity of the pattern as a whole. On the other hand, a pulse of enhanced or reduced dynamic pressure is also expected to produce a twin vortex, but with the central plasma flow being generally different in speed from, and almost orthogonal to, the motion of the whole pattern. In this paper, we make use of this distinction to discuss recent observations of vortical flow patterns in the dayside auroral ionosphere in terms of one or other of the proposed mechanisms. We conclude that some of the observations reported are consistent only with the predicted signature of FTEs. We then evaluate the dimensions of the open flux tubes required to explain some recent simultaneous radar and auroral observations and infer that they are typically 300 km in north–south extent but up to 2000 km in longitudinal extent (i.e., roughly 5 hours of MLT). Hence these observations suggest that recent theories of FTEs which invoke time-varying reconnection at an elongated neutral line may be correct. We also present some simultaneous observations of the interplanetary magnetic field (IMF) and solar wind dynamic pressure (observed using the IMP8 satellite) and the ionospheric flow (observed using the EISCAT radar) which are also only consistent with the FTE model. We estimate that for continuously southward IMF (
Resumo:
We present observations of a transient event in the dayside auroral ionosphere at magnetic noon. F-region plasma convection measurements were made by the EISCAT radar, operating in the beamswinging “Polar” experiment mode, and simultaneous observations of the dayside auroral emissions were made by optical meridian-scanning photometers and all-sky TV cameras at Ny Ålesund, Spitzbergen. The data were recorded on 9 January 1989, and a sequence of bursts of flow, with associated transient aurora, were observed between 08:45 and 11:00 U.T. In this paper we concentrate on an event around 09:05 U.T. because that is very close to local magnetic noon. The optical data show a transient intensification and widening (in latitude) of the cusp/cleft region, as seen in red line auroral emissions. Over an interval of about 10 min, the band of 630 nm aurora widened from about 1.5° of invariant latitude to over 5° and returned to its original width. Embedded within the widening band of 630 nm emissions were two intense, active 557.7 nm arc fragments with rays which persisted for about 2 min each. The flow data before and after the optical transient show eastward flows, with speeds increasing markedly with latitude across the band of 630 nm aurora. Strong, apparently westward, flows appeared inside the band while it was widening, but these rotated round to eastward, through northward, as the band shrunk to its original width. The observed ion temperatures verify that the flow speeds during the transient were, to a large extent, as derived using the beamswinging technique; but they also show that the flow increase initially occurred in the western azimuth only. This spatial gradient in the flow introduces ambiguity in the direction of these initial flows and they could have been north-eastward rather than westward. However, the westward direction derived by the beamswinging is consistent with the motion of the colocated and coincident active 557.7 nm arc fragment, A more stable transient 557.7 nm aurora was found close to the shear between the inferred westward flows and the persisting eastward flows to the North. Throughout the transient, northward flow was observed across the equatorward boundary of the 630 nm aurora. Interpretation of the data is made difficult by lack of IMF data, problems in distinguishing the cusp and cleft aurora and uncertainty over which field lines are open and which are closed. However, at magnetic noon there is a 50% probability that we were observing the cusp, in which case from its southerly location we infer that the IMF was southward and many features are suggestive of time-varying reconnection at a single X-line on the dayside magnetopause. This IMF orientation is also consistent with the polar rain precipitation observed simultaneously by the DMSP-F9 satellite in the southern polar cap. There is also a 25% chance that we were observing the cleft (or the mantle poleward of the cleft). In this case we infer that the IMF was northward and the transient is well explained by reconnection which is not only transient in time but occurs at various sites located randomly on the dayside magnetopause (i.e. patchy in space). Lastly, there is a 25% chance that we were observing the cusp poleward of the cleft, in which case we infer that IMF Bz was near zero and the transient is explained by a mixture of the previous two interpretations.
Resumo:
Combined observations by meridian-scanning photometers, all-sky auroral TV camera and the EISCAT radar permitted a detailed analysis of the temporal and spatial development of the midday auroral breakup phenomenon and the related ionospheric ion flow pattern within the 71°–75° invariant latitude radar field of view. The radar data revealed dominating northward and westward ion drifts, of magnitudes close to the corresponding velocities of the discrete, transient auroral forms, during the two different events reported here, characterized by IMF |BY/BZ| < 1 and > 2, respectively (IMF BZ between −8 and −3 nT and BY > 0). The spatial scales of the discrete optical events were ∼50 km in latitude by ∼500 km in longitude, and their lifetimes were less than 10 min. Electric potential enhancements with peak values in the 30–50 kV range are inferred along the discrete arc in the IMF |BY/BZ| < 1 case from the optical data and across the latitudinal extent of the radar field of view in the |BY/BZ| > 2 case. Joule heat dissipation rates in the maximum phase of the discrete structures of ∼ 100 ergs cm−2 s−1 (0.1 W m−2) are estimated from the photometer intensities and the ion drift data. These observations combined with the additional characteristics of the events, documented here and in several recent studies (i.e., their quasi-periodic nature, their motion pattern relative to the persistent cusp or cleft auroral arc, the strong relationship with the interplanetary magnetic field and the associated ion drift/E field events and ground magnetic signatures), are considered to be strong evidence in favour of a transient, intermittent reconnection process at the dayside magnetopause and associated energy and momentum transfer to the ionosphere in the polar cusp and cleft regions. The filamentary spatial structure and the spectral characteristics of the optical signature indicate associated localized ˜1-kV potential drops between the magnetopause and the ionosphere during the most intense auroral events. The duration of the events compares well with the predicted characteristic times of momentum transfer to the ionosphere associated with the flux transfer event-related current tubes. It is suggested that, after this 2–10 min interval, the sheath particles can no longer reach the ionosphere down the open flux tube, due to the subsequent super-Alfvénic flow along the magnetopause, conductivities are lower and much less momentum is extracted from the solar wind by the ionosphere. The recurrence time (3–15 min) and the local time distribution (∼0900–1500 MLT) of the dayside auroral breakup events, combined with the above information, indicate the important roles of transient magnetopause reconnection and the polar cusp and cleft regions in the transfer of momentum and energy between the solar wind and the magnetosphere.
Resumo:
The EISCAT radar has provided data for a comprehensive study of the high-latitude trough in electron concentration, which occurs in the auroral zone. In this paper the characteristics of the trough are illustrated, the method of its formation is outlined and important features of the trough are described. A large upward velocity along the geomagnetic field line is shown to play a significant role in the formation of the trough. The large ion-neutral difference velocities which initiate the formation of the trough may also drive the plasma into a non-thermal state which should be taken into account during the analysis of incoherent scatter data.
Resumo:
The orientation of the Interplanetary Magnetic Field (IMF) during transient bursts of ionospheric flow and auroral activity in the dayside auroral ionosphere is studied, using data from the EISCAT radar, meridian-scanning photometers, and an all-sky TV camera, in conjunction with simultaneous observations of the interplanetary medium by the IMP-8 satellite. It is found that the ionospheric flow and auroral burst events occur regularly (mean repetition period equal to 8.3 ± 0.6 min) during an initial period of about 45 min when the IMF is continuously and strongly southward in GSM coordinates, consistent with previous observations of the occurrence of transient dayside auroral activity. However, in the subsequent 1.5 h, the IMF was predominantly northward, and only made brief excursions to a southward orientation. During this period, the mean interval between events increased to 19.2 ± 1.7 min. If it is assumed that changes in the North-South component of the IMF are aligned with the IMF vector in the ecliptic plane, the delays can be estimated between such a change impinging upon IMP-8 and the response in the cleft ionosphere within the radar field-of-view. It is found that, to within the accuracy of this computed lag, each transient ionospheric event during the period of predominantly northward IMF can be associated with a brief, isolated southward excursion of the IMF, as observed by IMP-8. From this limited period of data, we therefore suggest that transient momentum exchange between the magnetosheath and the ionosphere occurs quasi-periodically when the IMF is continuously southward, with a mean period which is strikingly similar to that for Flux Transfer Events (FTEs) at the magnetopause. During periods of otherwise northward IMF, individual momentum transfer events can be triggered by brief swings to southward IMF. Hence under the latter conditions the periodicity of the events can reflect a periodicity in the IMF, but that period will always be larger than the minimum value which occurs when the IMF is strongly and continuously southward.