218 resultados para space requirements
Resumo:
We study a two-way relay network (TWRN), where distributed space-time codes are constructed across multiple relay terminals in an amplify-and-forward mode. Each relay transmits a scaled linear combination of its received symbols and their conjugates,with the scaling factor chosen based on automatic gain control. We consider equal power allocation (EPA) across the relays, as well as the optimal power allocation (OPA) strategy given access to instantaneous channel state information (CSI). For EPA, we derive an upper bound on the pairwise-error-probability (PEP), from which we prove that full diversity is achieved in TWRNs. This result is in contrast to one-way relay networks, in which case a maximum diversity order of only unity can be obtained. When instantaneous CSI is available at the relays, we show that the OPA which minimizes the conditional PEP of the worse link can be cast as a generalized linear fractional program, which can be solved efficiently using the Dinkelback-type procedure.We also prove that, if the sum-power of the relay terminals is constrained, then the OPA will activate at most two relays.
Resumo:
The currently available model-based global data sets of atmospheric circulation are a by-product of the daily requirement of producing initial conditions for numerical weather prediction (NWP) models. These data sets have been quite useful for studying fundamental dynamical and physical processes, and for describing the nature of the general circulation of the atmosphere. However, due to limitations in the early data assimilation systems and inconsistencies caused by numerous model changes, the available model-based global data sets may not be suitable for studying global climate change. A comprehensive analysis of global observations based on a four-dimensional data assimilation system with a realistic physical model should be undertaken to integrate space and in situ observations to produce internally consistent, homogeneous, multivariate data sets for the earth's climate system. The concept is equally applicable for producing data sets for the atmosphere, the oceans, and the biosphere, and such data sets will be quite useful for studying global climate change.
Resumo:
Correlations between various chemical species simulated by the Canadian Middle Atmosphere Model, a general circulation model with fully interactive chemistry, are considered in order to investigate the general conditions under which compact correlations can be expected to form. At the same time, the analysis serves to validate the model. The results are compared to previous work on this subject, both from theoretical studies and from atmospheric measurements made from space and from aircraft. The results highlight the importance of having a data set with good spatial coverage when working with correlations and provide a background against which the compactness of correlations obtained from atmospheric measurements can be confirmed. It is shown that for long-lived species, distinct correlations are found in the model in the tropics, the extratropics, and the Antarctic winter vortex. Under these conditions, sparse sampling such as arises from occultation instruments is nevertheless suitable to define a chemical correlation within each region even from a single day of measurements, provided a sufficient range of mixing ratio values is sampled. In practice, this means a large vertical extent, though the requirements are less stringent at more poleward latitudes.
Resumo:
During a period of heliospheric disturbance in 2007-9 associated with a co-rotating interaction region (CIR), a characteristic periodic variation becomes apparent in neutron monitor data. This variation is phase locked to periodic heliospheric current sheet crossings. Phase-locked electrical variations are also seen in the terrestrial lower atmosphere in the southern UK, including an increase in the vertical conduction current density of fair weather atmospheric electricity during increases in the neutron monitor count rate and energetic proton count rates measured by spacecraft. At the same time as the conduction current increases, changes in the cloud microphysical properties lead to an increase in the detected height of the cloud base at Lerwick Observatory, Shetland, with associated changes in surface meteorological quantities. As electrification is expected at the base of layer clouds, which can influence droplet properties, these observations of phase-locked thermodynamic, cloud, atmospheric electricity and solar sector changes are not inconsistent with a heliospheric disturbance driving lower troposphere changes.