267 resultados para Housing forecasting


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vintage-based vector autoregressive models of a single macroeconomic variable are shown to be a useful vehicle for obtaining forecasts of different maturities of future and past observations, including estimates of post-revision values. The forecasting performance of models which include information on annual revisions is superior to that of models which only include the first two data releases. However, the empirical results indicate that a model which reflects the seasonal nature of data releases more closely does not offer much improvement over an unrestricted vintage-based model which includes three rounds of annual revisions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We examine how the accuracy of real-time forecasts from models that include autoregressive terms can be improved by estimating the models on ‘lightly revised’ data instead of using data from the latest-available vintage. The benefits of estimating autoregressive models on lightly revised data are related to the nature of the data revision process and the underlying process for the true values. Empirically, we find improvements in root mean square forecasting error of 2–4% when forecasting output growth and inflation with univariate models, and of 8% with multivariate models. We show that multiple-vintage models, which explicitly model data revisions, require large estimation samples to deliver competitive forecasts. Copyright © 2012 John Wiley & Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper examines the interplay and tension between housing law and policy and property law, in the specific context of the right to buy (RTB). It focuses on funding arrangements between the RTB tenant and another party. It first examines how courts determine the parties' respective entitlements in the home, highlighting the difficulty of categorising, under traditional property law principles, a contribution in the form of the statutory discount conferred on the RTB tenant. Secondly, it considers possible exploitation of the RTB scheme, both at the macro level of exploitation of the policy underpinning the legislation and, at the micro level, of exploitation of the tenant. The measures contained in the Housing Act 2004 intended to curb exploitation of the RTB are analysed to determine what can be considered to be legitimate and illegitimate uses of the scheme. It is argued that, despite the government's implicit approval, certain funding arrangements by non-resident relatives fail to give effect to the spirit of the scheme.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper considers supply dynamics in the context of the Irish residential market. The analysis, in a multiple error-correction framework, reveals that although developers did respond to disequilibrium in supply, the rate of adjustment was relatively slow. In contrast, however, disequilibrium in demand did not impact upon supply, suggesting that inelastic supply conditions could explain the prolonged nature of the boom in the Irish market. Increased elasticity in the later stages of the boom may have been a contributory factor in the extent of the house price falls observed in recent years.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article examines the ability of several models to generate optimal hedge ratios. Statistical models employed include univariate and multivariate generalized autoregressive conditionally heteroscedastic (GARCH) models, and exponentially weighted and simple moving averages. The variances of the hedged portfolios derived using these hedge ratios are compared with those based on market expectations implied by the prices of traded options. One-month and three-month hedging horizons are considered for four currency pairs. Overall, it has been found that an exponentially weighted moving-average model leads to lower portfolio variances than any of the GARCH-based, implied or time-invariant approaches.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper examines the predictability of real estate asset returns using a number of time series techniques. A vector autoregressive model, which incorporates financial spreads, is able to improve upon the out of sample forecasting performance of univariate time series models at a short forecasting horizon. However, as the forecasting horizon increases, the explanatory power of such models is reduced, so that returns on real estate assets are best forecast using the long term mean of the series. In the case of indirect property returns, such short-term forecasts can be turned into a trading rule that can generate excess returns over a buy-and-hold strategy gross of transactions costs, although none of the trading rules developed could cover the associated transactions costs. It is therefore concluded that such forecastability is entirely consistent with stock market efficiency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The authors model retail rents in the United Kingdom with use of vector-autoregressive and time-series models. Two retail rent series are used, compiled by LaSalle Investment Management and CB Hillier Parker, and the emphasis is on forecasting. The results suggest that the use of the vector-autoregression and time-series models in this paper can pick up important features of the data that are useful for forecasting purposes. The relative forecasting performance of the models appears to be subject to the length of the forecast time-horizon. The results also show that the variables which were appropriate for inclusion in the vector-autoregression systems differ between the two rent series, suggesting that the structure of optimal models for predicting retail rents could be specific to the rent index used. Ex ante forecasts from our time-series suggest that both LaSalle Investment Management and CB Hillier Parker real retail rents will exhibit an annual growth rate above their long-term mean.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes and implements a new methodology for forecasting time series, based on bicorrelations and cross-bicorrelations. It is shown that the forecasting technique arises as a natural extension of, and as a complement to, existing univariate and multivariate non-linearity tests. The formulations are essentially modified autoregressive or vector autoregressive models respectively, which can be estimated using ordinary least squares. The techniques are applied to a set of high-frequency exchange rate returns, and their out-of-sample forecasting performance is compared to that of other time series models

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper uses appropriately modified information criteria to select models from the GARCH family, which are subsequently used for predicting US dollar exchange rate return volatility. The out of sample forecast accuracy of models chosen in this manner compares favourably on mean absolute error grounds, although less favourably on mean squared error grounds, with those generated by the commonly used GARCH(1, 1) model. An examination of the orders of models selected by the criteria reveals that (1, 1) models are typically selected less than 20% of the time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we study the role of the volatility risk premium for the forecasting performance of implied volatility. We introduce a non-parametric and parsimonious approach to adjust the model-free implied volatility for the volatility risk premium and implement this methodology using more than 20 years of options and futures data on three major energy markets. Using regression models and statistical loss functions, we find compelling evidence to suggest that the risk premium adjusted implied volatility significantly outperforms other models, including its unadjusted counterpart. Our main finding holds for different choices of volatility estimators and competing time-series models, underlying the robustness of our results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper investigates whether survey forecasters are able to make more accurate forecasts than simply supposing that the future values of the variable will move monotonically to the long-run expectation. We consider the forecasts individually, and the consensus forecasts. Consensus survey forecasts are able to do so to varying degrees depending on the variable, but this ability is largely limited to forecasts of the current quarter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate alternative robust approaches to forecasting, using a new class of robust devices, contrasted with equilibrium-correction models. Their forecasting properties are derived facing a range of likely empirical problems at the forecast origin, including measurement errors, impulses, omitted variables, unanticipated location shifts and incorrectly included variables that experience a shift. We derive the resulting forecast biases and error variances, and indicate when the methods are likely to perform well. The robust methods are applied to forecasting US GDP using autoregressive models, and also to autoregressive models with factors extracted from a large dataset of macroeconomic variables. We consider forecasting performance over the Great Recession, and over an earlier more quiescent period.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider the forecasting of macroeconomic variables that are subject to revisions, using Bayesian vintage-based vector autoregressions. The prior incorporates the belief that, after the first few data releases, subsequent ones are likely to consist of revisions that are largely unpredictable. The Bayesian approach allows the joint modelling of the data revisions of more than one variable, while keeping the concomitant increase in parameter estimation uncertainty manageable. Our model provides markedly more accurate forecasts of post-revision values of inflation than do other models in the literature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Flash floods pose a significant danger for life and property. Unfortunately, in arid and semiarid environment the runoff generation shows a complex non-linear behavior with a strong spatial and temporal non-uniformity. As a result, the predictions made by physically-based simulations in semiarid areas are subject to great uncertainty, and a failure in the predictive behavior of existing models is common. Thus better descriptions of physical processes at the watershed scale need to be incorporated into the hydrological model structures. For example, terrain relief has been systematically considered static in flood modelling at the watershed scale. Here, we show that the integrated effect of small distributed relief variations originated through concurrent hydrological processes within a storm event was significant on the watershed scale hydrograph. We model these observations by introducing dynamic formulations of two relief-related parameters at diverse scales: maximum depression storage, and roughness coefficient in channels. In the final (a posteriori) model structure these parameters are allowed to be both time-constant or time-varying. The case under study is a convective storm in a semiarid Mediterranean watershed with ephemeral channels and high agricultural pressures (the Rambla del Albujón watershed; 556 km 2 ), which showed a complex multi-peak response. First, to obtain quasi-sensible simulations in the (a priori) model with time-constant relief-related parameters, a spatially distributed parameterization was strictly required. Second, a generalized likelihood uncertainty estimation (GLUE) inference applied to the improved model structure, and conditioned to observed nested hydrographs, showed that accounting for dynamic relief-related parameters led to improved simulations. The discussion is finally broadened by considering the use of the calibrated model both to analyze the sensitivity of the watershed to storm motion and to attempt the flood forecasting of a stratiform event with highly different behavior.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although over a hundred thermal indices can be used for assessing thermal health hazards, many ignore the human heat budget, physiology and clothing. The Universal Thermal Climate Index (UTCI) addresses these shortcomings by using an advanced thermo-physiological model. This paper assesses the potential of using the UTCI for forecasting thermal health hazards. Traditionally, such hazard forecasting has had two further limitations: it has been narrowly focused on a particular region or nation and has relied on the use of single ‘deterministic’ forecasts. Here, the UTCI is computed on a global scale,which is essential for international health-hazard warnings and disaster preparedness, and it is provided as a probabilistic forecast. It is shown that probabilistic UTCI forecasts are superior in skill to deterministic forecasts and that despite global variations, the UTCI forecast is skilful for lead times up to 10 days. The paper also demonstrates the utility of probabilistic UTCI forecasts on the example of the 2010 heat wave in Russia.