454 resultados para Drew


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The terpenoid chiral selectors dehydroabietic acid, 12,14-dinitrodehydroabietic acid and friedelin have been covalently linked to silica gel yielding three chiral stationary phases CSP 1, CSP 2 and CSP 3, respectively. The enantiodiscriminating capability of each one of these phases was evaluated by HPLC with four families of chiral aromatic compounds composed of alcohols, amines, phenylalanine and tryptophan amino acid derivatives and beta-lactams. The CSP 3 phase, containing a selector with a large friedelane backbone is particularly suitable for resolving free alcohols and their derivatives bearing fluorine substituents, while CSP 2 with a dehydroabietic architecture is the only phase that efficiently discriminates 1, 1'-binaphthol atropisomers. CSP 3 also gives efficient resolution of the free amines. All three phases resolve well the racemates of N-trifluoracetyl and N-3,5-dinitrobenzoyl phenylalanine amino acid ester derivatives. Good enantioseparation of beta-lactams and N-benzoyl tryptophan amino acid derivatives was achieved on CSP 1. In order to understand the structural factors that govern the chiral molecular recognition ability of these phases, molecular dynamics simulations were carried out in the gas phase with binary diastereomeric complexes formed by the selectors of CSP 1 and CSP 2 and several amino acid derivatives. Decomposition of molecular mechanics energies shows that van der Waals interactions dominate the formation of the diastereomeric transient complexes while the electrostatic binding interactions are primarily responsible for the enantioselective binding of the (R)- and (S)-analytes. Analysis of the hydrogen bonds shows that electrostatic interactions are mainly associated with the formation of N-(HO)-O-...=C enantio selective hydrogen bonds between the amide binding sites from the selectors and the carbonyl groups of the analytes. The role of mobile phase polarity, a mixture of n-hexane and propan-2-ol in different ratios, was also evaluated through molecular dynamics simulations in explicit solvent. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

[(VO)-O-IV(acac)(2)] reacts with an equimolar amount of benzoyl hydrazones of 2-hydroxyacetophenone (H2L1), 2-hydroxy-5-methylacetophenone (H2L2) and 5-chloro-2-hydroxyacetophenone (H2L4) in methanol to afford the penta-coordinated mixed-ligand methoxy bonded oxidovanadium(V) complexes [(VO)-O-V(L-1)-(OCHA(3))](1). [(VO)-O-V(L-2)(OCH3)](2), and [(VO)-O-V(L-4)(OCH3)](4), respectively, whereas, the similar reaction with the benzoyl hydrazone of 2-hydroxy-5-methoxyacetophenone (H2L3) producing only the hexa-coordinated dimethoxy-bridged dimeric complex [(VO)-O-V(L-3)(OCH3)](2) (3A). Similar type of hexa-coordinated dimeric analogue of 1 i.e., [(VO)-O-V(L-1)(OCH3)](2) (1A) was obtained from the reaction of [(VO)-O-IV(acac)(2)] with the equimolar amount of H2L1 in presence of half equivalent 4,4'-bipyridine in methanol while the decomposition of [(VO)-O-IV(L-2)(bipy)] complex in methanol afforded the dimeric analogue of 2 i.e., [(VO)-O-V(L-2)(OCH3)](2) (2A). All these dimeric complexes 1A-3A react with an excess amount of imidazole in methanol producing the respective monomeric complex. The X-ray structural analysis of 1-3 and their dimeric analogues 1A-3A indicates that the geometry around the vanadium center in the monomeric form is distorted square-pyramidal while that of their respective dimeric forms is distorted octahedral, where the ligands are bonded to vanadium meridionally in their fully deprotonated enol forms. Due to the formation of bridge, the V-O(methoxy) bond in the dimeric complexes is lengthened to such an extent that it becomes equal in length with the V-O(phenolate) bond in 3A and even longer in 1A and 2A, which is unprecedented. The H-1 NMR spectra of the complexes 1A-3A in CDCl3 solution, indicates that these dimeric complexes are converted appreciably into their respective monomeric form. Complexes are electro-active displaying one quasi-reversible reduction peak near +0.25 V versus SCE in CH2Cl2 solution. The E-1/2 values of the complexes show linear relationship with the Hammett parameter (sigma) of the substituents. All these VO3+-complexes are converted to the corresponding complexes with V2O34+ motif simply on refluxing them in acetone and to the complexes with VO2+ motif on reaction with 2 KOH in methanol. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The orthorhombic crystalline variety (with Pbca space group) of the title complex [V2O3(L)(2)], incorporating the doubly deprotonated tridentate benzoyl hydrazone of 2-hydroxy-5-methylacetophenone has been synthesized from the decomposition of [(VO)-O-IV(L)(bipy)] complex in CH2Cl2 and structurally characterized in contrast to its recently reported monoclinic variety (with C2/c space group) obtained from the reaction of [VO(acac)(2)] with H2L in acetone.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

[VIVO(acac)(2)] reacts with an equimolar amount of benzoyl hydrazone of 2-hydroxyacetophenone (H2L1) or 5-chloro-2-hydroxyacetophenone (H2L2) in the presence of excess pyridine (py) in methanol to produce the quaternary [(VO)-O-V(L-1)(OCH3)(py)] (1) and [(VO)-O-V(L-2)(OCH3)(py)] (2) complexes, respectively, while under similar condition, the benzoyl hydrazones of 2-hydroxy-5-methylacetophenone (H2L3) and 2-hydroxy-5-methoxyacetophenone (H2L4) afforded only the methoxy bridged dimeric [(VO)-O-V(L-3/L-4)(OCH3)](2) complexes. The X-ray structural analysis of 1 and 2 indicates that the geometry around the metal is distorted octahedral where the three equatorial positions are occupied by the phenolate-O, enolate-O and the imine-N of the fully deprotonated hydrazone ligand in its enolic form and the fourth one by a methoxide-O atom. An oxo-O and a pyridine-N atom occupy two axial positions. Quaternary complexes exhibit one quasi-reversible one-electron reduction peak near 0.25 V versus SCE in CH2Cl2 and they decompose appreciably to the corresponding methoxy bridged dimeric complex in CDCl3 solution as indicated by their H-1 NMR spectra. These quaternary VO3+ complexes are converted to the corresponding V2O34+-complexes simply on refluxing them in acetone and to the VO2+-complexes on reaction with KOH in methanol. An equimolar amount of 8-hydroxyquinoline (Hhq) converts these quaternary complexes to the ternary [(VO)-O-V(L)(hq)] complexes in CHCl3. (C) 2009 Elsevier B. V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dinuclear trioxidic [{VOL}(2)mu-O] (1-4) complexes were synthesized from the reaction of [(VO)-O-IV(acac)(2)] with an equimolar amount of H2L [H2L is the general abbreviation of hydrazone ligands (H2L1-4) derived from the condensation of benzoyl hydrazine with either 2-hydroxyacetophenone or its para substituted derivatives] in acetone or CH2Cl2 or acetonitrile. These V2O3L2 complexes were also obtained from the reaction of VOSO4 with H2L in the presence of two equivalents sodium acetate in aqueous-methanolic (50% V/V) medium and also from the decomposition of [(VO)-O-IV(L)(bipy/phen)] complexes in CH2Cl2 Solution. Black monoclinic crystals of 2 and 4 with C2/c space group were obtained from the reaction of [(VO)-O-IV(acac)(2)], respectively, with H2L2 and H2L4 in acetone in which the respective ligands are bonded meridionally to vanadium in their fully deprotonated enol forms. The V-O bond lengths follow the order: V-O(oxo) < V-O(oxo-bridged) < V-O(phenolate) < V-O(enolate). Complexes (1-4) are diamagnetic exhibiting LMCT transition band near 380 nm in CH2Cl2 solution and they are electroactive displaying a quasi-reversible reduction peak in the 0.14-0.30 V versus SCE region. The and the reduction peak potential (E-p(c)) values show linear relationships with the Hammett constant (sigma) of the substituents in the hydrazone ligands. These dinuclear complexes are converted to the corresponding mononuclear cis dioxo complexes K(H2O)(+)[(VO2)-O-V(L)](-) (5-8) and mixed-ligand [(VO)-O-V(L)(hq)] complexes on reaction, respectively, with two equivalents KOH in methanol and two equivalents 8-hydroxyquinoline (Hhq) in CHCl3. Ascorbic acid reduces the dioxovanadium(V) complexes reversibly under aerobic condition. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A rare mu(6)-oxo-centered Mn-6 mixed-valent cluster (1) is prepared and used as a secondary building unit for the self-assembly of its azido-bridged polymeric analogue (2) in a systematic way with the retention of the Mn-6 core of (1). Both complexes are characterized by X-ray single-crystal structure determination. The complex 1 was crystallized in a monoclinic system, space group P2(1), a = 11.252(5) A, b = 20.893(9) A, c = 12.301(6) A, and beta = 115.853(7)degrees, whereas the polymeric analogue was crystallized in an orthorhombic system, space group P2(1)2(1)2(1), a = 13.1941(8) A, b = 14.9897(9) A, and c = 27.8746(14) A. Variable-temperature magnetic behavior showed the presence of strong antiferromagnetic interaction in both cases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Three di-Schiff-base ligands, N,N'-bis(salicylidene)-1,3-propanediamine (H(2)Salpn), N,N'-bis(salicylidene)-1,3-pentanedianiine (H(2)Salpen) and N,N'-bis(salicylidine)-ethylenediamine (H(2)Salen) react with Ni(SCN)(2). 4H(2)O in 2:3 molar ratios to form the complexes; mononuclear [Ni(HSalpn)(NCS)(H2O)]center dot H2O (1a), trinuclear [{Ni(Salpen)}(2)Ni(NCS)(2)] (2b) and trinuclear [{Ni(Salen)}(2)Ni(NCS)(2)] (3) respectively. All the complexes have been characterized by elemental analyses, IR and UV-VIS spectra, and room temperature magnetic susceptibility measurements. The structures of la and 2b have been confirmed by X-ray single crystal analysis. In complex la, the Ni(II) atom is coordinated equatorially by the tetradentate, mononegative Schiff-base, HSalpn. Axial coordination of isothiocyanate group and a water molecule completes its octahedral geometry. The hydrogen atom attached to one of the oxygen atoms of the Schiff base is involved in a very strong hydrogen bond with a neighboring unit to form a centrosymmetric dimer. In 2b, two square planar [Ni(Salpen)] units act as bide mate oxygen donor ligands to a central Ni(II) which is also coordinated by two mutually cis N-bonded thiocyanate ligands to complete its distorted octahedral geometry. Complex 3 possesses a similar structure to that of 2b. A dehydrated form of la and a hydrated form of 2b have been obtained and characterized. The importance of electronic and steric factors in the variation of the structures is discussed. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Four trinuclear Cu(II) complexes, [(CuL1)(3)(mu(3)-OH)](NO3)(2) (1), [(CuL2)(3)(mu(3)-OH)](I)(2)center dot H2O (2), [(CuL3)(3)(mu(3)-OH)](I)(2) (3) and [(CuL1)(3)(mu(3)-OH)][(CuI3)-I-1] (4), where HL1 (8-amino-4-methyl-5-azaoct-3-en-2-one), HL2 [7-amino-4-methyl-5-azaoct-3-en-2-one] and HL3 [7-amino-4-methyl-5-azahept-3-en-2- one] are the three tridentate Schiff bases, have been synthesized and structurally characterized by X-ray crystallography. All four complexes contain a partial cubane core, [(CuL)(3)(mu(3)-OH)](2+) in which the three [CuL] subunits are interconnected through two types of oxygen bridges afforded by the oxygen atoms of the ligands and the central OH- group. The copper(II) ions are in a distorted square-pyramidal environment. The equatorial plane consists of the bridging oxygen of the central OH- group together with three atoms (N, N, O) from the Schiff base. The oxygen atom of the Schiff base also coordinates to the axial position of Cu(II) of another subunit to form the cyclic trimer. Magnetic susceptibilities have been determined for these complexes over the temperature range of 2-300 K. The isotropic Hamiltonian, H = -J(12)S(1)S(2) - J(13)S(1)S(3) - J(23)S(2)S(3) has been used to interpret the magnetic data. The best fit parameters obtained are: J = - 54.98 cm(-1) g = 2.24 for 1; J = - 56.66 cm(-1), g = 2.19 for 2; J = -44.39 cm(-1), g = 2.16 for 3; J = - 89.92 cm(-1), g = 2.25 for 4. The EPR data at low temperature indicate that the phenomenon of spin frustration occurs for complexes 1-3. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Formation of a quasi-symmetrical mu(3)-carbonato-bridged self-assembled heteromolecular triangle of Ni(II), [(mu(3)-CO3){Ni-2(salmeNH)(2)(NCS)(2)}[Ni(salmeNH(2))(2)]center dot Et2O center dot H2O (HsalmeNH = 2-[(3-methylamino-propylimino)-methyl]-phenol) involves atmospheric CO2 uptake in a neutral medium, by spontaneous self-reorganization of the starting mononuclear Ni(II)-Schiff-base complex, [Ni(salmeNH)(2)]. The environment around Ni(II) in two of the subunits is different from the third one. The starting complex, (Ni(salmeNH)(2)], and one of the possible intermediate species, [Ni(salmeNH(2))(2)(NCS)(2)], which has a very similar coordination environment to that in the third Ni(II) center, have been characterized structurally. A plausible mechanism for the formation of such a triangle has also been proposed. The compound shows a very strong antiferromagnetic coupling. Fit as a regular triangular arrangement gave J = -53.1, g = 2.24, and R = 1.5 x 10(-4).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Three copper(II) complexes, [CuL1], [CuL2] and [CuL3] where L-1, L-2 and L-3 are the tetradentate di-Schiff-base ligands prepared by the condensation of acetylacetone and appropriate diamines (e.g. 1,2-diaminoethane, 1,2-diaminopropane and 1,3-diaminopropane, respectively) in 2:1 ratios, have been prepared. These complexes act as host molecules and include a guest sodium ion by coordinating through the oxygen atoms to result in corresponding new trinuclear complexes, [(CuL1)(2)Na(ClO4)(H2O)][CuL1], [(CuL2)(2)Na(ClO4)(H2O)] (2) and [(CuL3)(2)Na(ClO4)(H2O)] (3) when crystallized from methanol solution containing sodium perchlorate. All three complexes have been characterized by single crystal X-ray crystallography. In all the complexes, the sodium cation has a six-coordinate distorted octahedral environment being bonded to four oxygen atoms from two Schiff-base complexes of Cu(II) in addition to a perchlorate anion and a water molecule. The copper atoms are four coordinate in a square planar environment being bonded to two oxygen atoms and two nitrogen atoms of the Schiff-base ligand. The variable temperature susceptibilities for complexes 1-3 were measured over the range 2-300 K. The isotropic Hamiltonian, H = g(1)beta HS1 + g(2)beta HS2 + J(12)S(1)S(2) + g(3)beta HS3 for complex 1 and H = g(1)beta HS1 + g2 beta HS2 +J(12)S(1)S(2) for complexes 2 and 3 has been used to interpret the magnetic data. The best fit parameters obtained are: g(1) = g(2) = 2.07(0), J = - 1.09(1) cm(-1) for complex 1, g(1) = g(2) = 2.06(0), J = -0.55(1) cm(-1) for complex 2 and g1 = g2 = 2.07(0).J = -0.80(1) cm(-1) for 3. Electrochemical studies displayed an irreversible Cu(II)/Cu(I) one-electron reduction process. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bis(o-hydroxyacetophenone)nickel(II) dihydrate, on reaction with 1,3-pentanediamine, yields a bis-chelate complex [NiL2]center dot 2H(2)O (1) of mono-condensed tridentate Schiff base ligand HL {2-[1-(3-aminopentylimino)ethyl]phenol}. The Schiff base has been freed from the complex by precipitating the Nil, as a dimethylglyoximato complex. HL reacts smoothly with Ni(SCN)(2)center dot 4H(2)O furnishing the complex [NiL(NCS)] (2) and with CuCl2 center dot 2H(2)O in the presence of NaN3 or NH4SCN producing [CuL(N-3)](2) (3) or [CuL(NCS)] (4). On the other hand, upon reaction with Cu(ClO4)(2)center dot 6H(2)O and Cu(NO3)(2)center dot 3H(2)O, the Schiff base undergoes hydrolysis to yield ternary complexes [Cu(hap)(pn)(H2O)]ClO4 (5) and [Cu(hap)(pn)(H2O)]NO3 (6), respectively (Hhap = o-hydroxyacetophenone and pn = 1,3-pentanediamine). The ligand HL undergoes hydrolysis also on reaction with Ni(ClO4)(2)center dot 6H(2)O or Ni(NO3)(2)center dot 6H(2)O to yield [Ni(hap)(2)] (7). The structures of the complexes 2, 3, 5, 6, and 7 have been confirmed by single-crystal X-ray analysis. In complex 2, Ni-II possesses square-planar geometry, being coordinated by the tridentate mono-negative Schiff base, L and the isothiocyanate group. The coordination environment around Cu-II in complex 3 is very similar to that in complex 2 but here two units are joined together by end-on, axial-equatorial azide bridges to result in a dimer in which the geometry around Cu-II is square pyramidal. In both 5 and 6, the Cu-II atoms display the square-pyramidal environment; the equatorial sites being coordinated by the two amine groups of 1,3-pentanediamine and two oxygen atoms of o-hydroxyacetophenone. The axial site is coordinated by a water molecule. Complex 7 is a square-planar complex with the Ni atom bonded to four oxygen atoms from two hap moieties. The mononuclear units of 2 and dinuclear units of 3 are linked by strong hydrogen bonds to form a one-dimensional network. The mononuclear units of 5 and 6 are joined together to form a dimer by very strong hydrogen bonds through the coordinated water molecule. These dimers are further involved in hydrogen bonding with the respective counteranions to form 2-D net-like open frameworks. ((C) Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2008).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A linear trinuclear Ni-Schiff base complex [Ni-3(salpen)(2)(PhCH2COO)(2)(EtOH)] has been synthesized by combining Ni(ClO4)(2)center dot 6H(2)O, phenyl acetic acid (C6H5CH2COOH), and the Schiff base ligand, N,N'-bis(salicylidene)-1,3-pentanediamine (H(2)salpen). This complex is self-assembled through hydrogen bonding and C-H-g interaction in the solid state to generate a sheet-like architecture, while in organic solvent (CH2Cl2), it forms vesicles with a mean diameter of 290 nm and fused vesicles, depending upon the concentration of the solution. These vesicles act as an excellent carrier of dye molecules in CH2Cl2. The morphology of the complex has been determined by scanning electron microscopy and transmission electron microscopy experiments, and the encapsulation of dye has been examined by confocal microscopic image and electronic absorption spectra.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Structural and magnetic characterization of compound {[Ni-2(L)(2)(OAC)(2)][Ni-3(L)(2) (OAc)(4)]) center dot 2CH(3)CN (3) (HL = the tridentate Schiff base ligand, 2-[(3-methylaminb-propylimino)-methyl]-phenol) shows that it is a rare example of a crystal incorporating a dinuclear Ni(II) compound, [Ni-2(L)(2)(OAc)(2)], and a trinuclear one, [Ni-3(L)(2)(OAC)(4)]. Even more unusual is the fact that both Ni (II) complexes, [Ni-2(L)(2)(OAc)(2)] (1) and [Ni-3(L)(2)(OAc)(4)(H2O)(2)] center dot CH2Cl2 center dot 2CH(3)OH (2), have also been isolated and structurally and magnetically characterized. The structural analysis reveals that the dimeric complexes [Ni-2(L)(2)(OAc)(2)] in cocrystal 3 and in compound 1 are almost identical-in both complexes, the Ni(II) ions possess a distorted octahedral geometry formed by the chelating tridentate ligand (L), a chelating acetate ion, and a bridging phenoxo group with very similar bond angles and distances. On the other hand, compound 2 and the trinuclear complex in the cocrystal 3 show a similar linear centrosymmetric structure with the tridentate ligand coordinated to the terminal Ni(II) and linked to the central Ni(II) by phenoxo and carboxylate bridges. The only difference is that a water molecule found in 2 is not present in the trinuclear unit of complex 3; instead, the coordination sphere is completed by an additional bridging oxygen atom from an acetate ligand. Variable-temperature (2-300 K) magnetic susceptibility measurements show that the dinuclear unit is antiferromagnetically coupled in both compounds (2J = -36.18 and -29.5 cm(-1) in 1 and 3, respectively), whereas the trinuclear unit shows a very weak ferromagnetic coupling in compound 3 (2J = 0.23 cm(-1)) and a weak antiferromagnetic coupling in 2 (2J = -8.7(2) cm(-1)) due to the minor changes in the coordination sphere.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A series of five Ni(II)-complexes containing the same tridentate Schiff base but different monoanionic ligands (N-3(-), NO3-, PhCOO- and NO2-)reveals that the competitive as well as the cooperative role of the monoanions and phenoxo group in bridging the metal ions play the key role in the variation of molecular architecture.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new linear trinuclear nickel(II) complex, [Ni-3(salme)(2)(OCn)(4)] (Hsalme = 2-[(3-methylamino-propylimino)-methyl]-phenol, OCn = cinnamate), showing weak ferromagnetic coupling (J = 1.8(1) cm(-1)) through phenoxo and a novel tridentate bridging mode (1 kappa(OO)-O-2':2 kappa O') of the cinnamate ligand has been synthesized and structurally characterized by X-ray crystallography. (C) 2009 Elsevier B.V. All rights reserved.