217 resultados para linear approximation
Resumo:
We consider the impact of data revisions on the forecast performance of a SETAR regime-switching model of U.S. output growth. The impact of data uncertainty in real-time forecasting will affect a model's forecast performance via the effect on the model parameter estimates as well as via the forecast being conditioned on data measured with error. We find that benchmark revisions do affect the performance of the non-linear model of the growth rate, and that the performance relative to a linear comparator deteriorates in real-time compared to a pseudo out-of-sample forecasting exercise.
Resumo:
Using a linear factor model, we study the behaviour of French, Germany, Italian and British sovereign yield curves in the run up to EMU. This allows us to determine which of these yield curves might best approximate a benchmark yield curve post EMU. We find that the best approximation for the risk free yield is the UK three month T-bill yield, followed by the German three month T-bill yield. As no one sovereign yield curve dominates all others, we find that a composite yield curve, consisting of French, Italian and UK bonds at different maturity points along the yield curve should be the benchmark post EMU.
Resumo:
This paper models the transmission of shocks between the US, Japanese and Australian equity markets. Tests for the existence of linear and non-linear transmission of volatility across the markets are performed using parametric and non-parametric techniques. In particular the size and sign of return innovations are important factors in determining the degree of spillovers in volatility. It is found that a multivariate asymmetric GARCH formulation can explain almost all of the non-linear causality between markets. These results have important implications for the construction of models and forecasts of international equity returns.
Resumo:
This paper forecasts Daily Sterling exchange rate returns using various naive, linear and non-linear univariate time-series models. The accuracy of the forecasts is evaluated using mean squared error and sign prediction criteria. These show only a very modest improvement over forecasts generated by a random walk model. The Pesaran–Timmerman test and a comparison with forecasts generated artificially shows that even the best models have no evidence of market timing ability.
Resumo:
We study the approximation of harmonic functions by means of harmonic polynomials in two-dimensional, bounded, star-shaped domains. Assuming that the functions possess analytic extensions to a delta-neighbourhood of the domain, we prove exponential convergence of the approximation error with respect to the degree of the approximating harmonic polynomial. All the constants appearing in the bounds are explicit and depend only on the shape-regularity of the domain and on delta. We apply the obtained estimates to show exponential convergence with rate O(exp(−b square root N)), N being the number of degrees of freedom and b>0, of a hp-dGFEM discretisation of the Laplace equation based on piecewise harmonic polynomials. This result is an improvement over the classical rate O(exp(−b cubic root N )), and is due to the use of harmonic polynomial spaces, as opposed to complete polynomial spaces.
Resumo:
Semi-analytical expressions for the momentum flux associated with orographic internal gravity waves, and closed analytical expressions for its divergence, are derived for inviscid, stationary, hydrostatic, directionally-sheared flow over mountains with an elliptical horizontal cross-section. These calculations, obtained using linear theory conjugated with a third-order WKB approximation, are valid for relatively slowly-varying, but otherwise generic wind profiles, and given in a form that is straightforward to implement in drag parametrization schemes. When normalized by the surface drag in the absence of shear, a quantity that is calculated routinely in existing drag parametrizations, the momentum flux becomes independent of the detailed shape of the orography. Unlike linear theory in the Ri → ∞ limit, the present calculations account for shear-induced amplification or reduction of the surface drag, and partial absorption of the wave momentum flux at critical levels. Profiles of the normalized momentum fluxes obtained using this model and a linear numerical model without the WKB approximation are evaluated and compared for two idealized wind profiles with directional shear, for different Richardson numbers (Ri). Agreement is found to be excellent for the first wind profile (where one of the wind components varies linearly) down to Ri = 0.5, while not so satisfactory, but still showing a large improvement relative to the Ri → ∞ limit, for the second wind profile (where the wind turns with height at a constant rate keeping a constant magnitude). These results are complementary, in the Ri > O(1) parameter range, to Broad’s generalization of the Eliassen–Palm theorem to 3D flow. They should contribute to improve drag parametrizations used in global weather and climate prediction models.
Resumo:
In this paper we propose and analyse a hybrid numerical-asymptotic boundary element method for the solution of problems of high frequency acoustic scattering by a class of sound-soft nonconvex polygons. The approximation space is enriched with carefully chosen oscillatory basis functions; these are selected via a study of the high frequency asymptotic behaviour of the solution. We demonstrate via a rigorous error analysis, supported by numerical examples, that to achieve any desired accuracy it is sufficient for the number of degrees of freedom to grow only in proportion to the logarithm of the frequency as the frequency increases, in contrast to the at least linear growth required by conventional methods. This appears to be the first such numerical analysis result for any problem of scattering by a nonconvex obstacle. Our analysis is based on new frequency-explicit bounds on the normal derivative of the solution on the boundary and on its analytic continuation into the complex plane.
Resumo:
We discuss the modelling of dielectric responses of amorphous biological samples. Such samples are commonly encountered in impedance spectroscopy studies as well as in UV, IR, optical and THz transient spectroscopy experiments and in pump-probe studies. In many occasions, the samples may display quenched absorption bands. A systems identification framework may be developed to provide parsimonious representations of such responses. To achieve this, it is appropriate to augment the standard models found in the identification literature to incorporate fractional order dynamics. Extensions of models using the forward shift operator, state space models as well as their non-linear Hammerstein-Wiener counterpart models are highlighted. We also discuss the need to extend the theory of electromagnetically excited networks which can account for fractional order behaviour in the non-linear regime by incorporating nonlinear elements to account for the observed non-linearities. The proposed approach leads to the development of a range of new chemometrics tools for biomedical data analysis and classification.
Resumo:
This article shows how one can formulate the representation problem starting from Bayes’ theorem. The purpose of this article is to raise awareness of the formal solutions,so that approximations can be placed in a proper context. The representation errors appear in the likelihood, and the different possibilities for the representation of reality in model and observations are discussed, including nonlinear representation probability density functions. Specifically, the assumptions needed in the usual procedure to add a representation error covariance to the error covariance of the observations are discussed,and it is shown that, when several sub-grid observations are present, their mean still has a representation error ; socalled ‘superobbing’ does not resolve the issue. Connection is made to the off-line or on-line retrieval problem, providing a new simple proof of the equivalence of assimilating linear retrievals and original observations. Furthermore, it is shown how nonlinear retrievals can be assimilated without loss of information. Finally we discuss how errors in the observation operator model can be treated consistently in the Bayesian framework, connecting to previous work in this area.
Resumo:
The nuclear time-dependent Hartree-Fock model formulated in three-dimensional space, based on the full standard Skyrme energy density functional complemented with the tensor force, is presented. Full self-consistency is achieved by the model. The application to the isovector giant dipole resonance is discussed in the linear limit, ranging from spherical nuclei (16O and 120Sn) to systems displaying axial or triaxial deformation (24Mg, 28Si, 178Os, 190W and 238U). Particular attention is paid to the spin-dependent terms from the central sector of the functional, recently included together with the tensor. They turn out to be capable of producing a qualitative change on the strength distribution in this channel. The effect on the deformation properties is also discussed. The quantitative effects on the linear response are small and, overall, the giant dipole energy remains unaffected. Calculations are compared to predictions from the (quasi)-particle random-phase approximation and experimental data where available, finding good agreement
Resumo:
The Monte Carlo Independent Column Approximation (McICA) is a flexible method for representing subgrid-scale cloud inhomogeneity in radiative transfer schemes. It does, however, introduce conditional random errors but these have been shown to have little effect on climate simulations, where spatial and temporal scales of interest are large enough for effects of noise to be averaged out. This article considers the effect of McICA noise on a numerical weather prediction (NWP) model, where the time and spatial scales of interest are much closer to those at which the errors manifest themselves; this, as we show, means that noise is more significant. We suggest methods for efficiently reducing the magnitude of McICA noise and test these methods in a global NWP version of the UK Met Office Unified Model (MetUM). The resultant errors are put into context by comparison with errors due to the widely used assumption of maximum-random-overlap of plane-parallel homogeneous cloud. For a simple implementation of the McICA scheme, forecasts of near-surface temperature are found to be worse than those obtained using the plane-parallel, maximum-random-overlap representation of clouds. However, by applying the methods suggested in this article, we can reduce noise enough to give forecasts of near-surface temperature that are an improvement on the plane-parallel maximum-random-overlap forecasts. We conclude that the McICA scheme can be used to improve the representation of clouds in NWP models, with the provision that the associated noise is sufficiently small.
Resumo:
In this paper an equation is derived for the mean backscatter cross section of an ensemble of snowflakes at centimeter and millimeter wavelengths. It uses the Rayleigh–Gans approximation, which has previously been found to be applicable at these wavelengths due to the low density of snow aggregates. Although the internal structure of an individual snowflake is random and unpredictable, the authors find from simulations of the aggregation process that their structure is “self-similar” and can be described by a power law. This enables an analytic expression to be derived for the backscatter cross section of an ensemble of particles as a function of their maximum dimension in the direction of propagation of the radiation, the volume of ice they contain, a variable describing their mean shape, and two variables describing the shape of the power spectrum. The exponent of the power law is found to be −. In the case of 1-cm snowflakes observed by a 3.2-mm-wavelength radar, the backscatter is 40–100 times larger than that of a homogeneous ice–air spheroid with the same mass, size, and aspect ratio.
Resumo:
Georeferencing is one of the major tasks of satellite-borne remote sensing. Compared to traditional indirect methods, direct georeferencing through a Global Positioning System/inertial navigation system requires fewer and simpler steps to obtain exterior orientation parameters of remotely sensed images. However, the pixel shift caused by geographic positioning error, which is generally derived from boresight angle as well as terrain topography variation, can have a great impact on the precision of georeferencing. The distribution of pixel shifts introduced by the positioning error on a satellite linear push-broom image is quantitatively analyzed. We use the variation of the object space coordinate to simulate different kinds of positioning errors and terrain topography. Then a total differential method was applied to establish a rigorous sensor model in order to mathematically obtain the relationship between pixel shift and positioning error. Finally, two simulation experiments are conducted using the imaging parameters of Chang’ E-1 satellite to evaluate two different kinds of positioning errors. The experimental results have shown that with the experimental parameters, the maximum pixel shift could reach 1.74 pixels. The proposed approach can be extended to a generic application for imaging error modeling in remote sensing with terrain variation.