238 resultados para Minimum processing
Resumo:
The area of Arctic September sea ice has diminished from about 7 million km2 in the 1990s to less than 5 million km2 in five of the past seven years, with a record minimum of 3.6 million km2 in 2012 (ref. 1). The strength of this decrease is greater than expected by the scientific community, the reasons for this are not fully understood, and its simulation is an on-going challenge for existing climate models2, 3. With growing Arctic marine activity there is an urgent demand for forecasting Arctic summer sea ice4. Previous attempts at seasonal forecasts of ice extent were of limited skill5, 6, 7, 8, 9. However, here we show that the Arctic sea-ice minimum can be accurately forecasted from melt-pond area in spring. We find a strong correlation between the spring pond fraction and September sea-ice extent. This is explained by a positive feedback mechanism: more ponds reduce the albedo; a lower albedo causes more melting; more melting increases pond fraction. Our results help explain the acceleration of Arctic sea-ice decrease during the past decade. The inclusion of our new melt-pond model10 promises to improve the skill of future forecast and climate models in Arctic regions and beyond.
Resumo:
Many communication signal processing applications involve modelling and inverting complex-valued (CV) Hammerstein systems. We develops a new CV B-spline neural network approach for efficient identification of the CV Hammerstein system and effective inversion of the estimated CV Hammerstein model. Specifically, the CV nonlinear static function in the Hammerstein system is represented using the tensor product from two univariate B-spline neural networks. An efficient alternating least squares estimation method is adopted for identifying the CV linear dynamic model’s coefficients and the CV B-spline neural network’s weights, which yields the closed-form solutions for both the linear dynamic model’s coefficients and the B-spline neural network’s weights, and this estimation process is guaranteed to converge very fast to a unique minimum solution. Furthermore, an accurate inversion of the CV Hammerstein system can readily be obtained using the estimated model. In particular, the inversion of the CV nonlinear static function in the Hammerstein system can be calculated effectively using a Gaussian-Newton algorithm, which naturally incorporates the efficient De Boor algorithm with both the B-spline curve and first order derivative recursions. The effectiveness of our approach is demonstrated using the application to equalisation of Hammerstein channels.
Resumo:
Rationale: Pramipexole, a D2/D3 dopamine receptor agonist, has been implicated in the development of impulse control disorders in patients with Parkinson's disease. Investigation of single doses of pramipexole in healthy participants in reward-based learning tasks has shown inhibition of the neural processing of reward, presumptively through stimulation of dopamine autoreceptors. Objectives: This study aims to examine the effects of pramipexole on the neural response to the passive receipt of rewarding and aversive sight and taste stimuli. Methods: We used functional magnetic resonance imaging to examine the neural responses to the sight and taste of pleasant (chocolate) and aversive (mouldy strawberry) stimuli in 16 healthy volunteers who received a single dose of pramipexole (0.25 mg) and placebo in a double-blind, within-subject, design. Results: Relative to placebo, pramipexole treatment reduced blood oxygen level-dependent activation to the chocolate stimuli in the areas known to play a key role in reward, including the ventromedial prefrontal cortex, the orbitofrontal cortex, striatum, thalamus and dorsal anterior cingulate cortex. Pramipexole also reduced activation to the aversive condition in the dorsal anterior cingulate cortex. There were no effects of pramipexole on the subjective ratings of the stimuli. Conclusions: Our results are consistent with an ability of acute, low-dose pramipexole to diminish dopamine-mediated responses to both rewarding and aversive taste stimuli, perhaps through an inhibitory action of D2/3 autoreceptors on phasic burst activity of midbrain dopamine neurones. The ability of pramipexole to inhibit aversive processing might potentiate its adverse behavioural effects and could also play a role in its proposed efficacy in treatment-resistant depression.
Resumo:
The ability to match individual patients to tailored treatments has the potential to greatly improve outcomes for individuals suffering from major depression. In particular, while the vast majority of antidepressant treatments affect either serotonin or noradrenaline or a combination of these two neurotransmitters, it is not known whether there are particular patients or symptom profiles which respond preferentially to the potentiation of serotonin over noradrenaline or vice versa. Experimental medicine models suggest that the primary mode of action of these treatments may be to remediate negative biases in emotional processing. Such models may provide a useful framework for interrogating the specific actions of antidepressants. Here, we therefore review evidence from studies examining the effects of drugs which potentiate serotonin, noradrenaline or a combination of both neurotransmitters on emotional processing. These results suggest that antidepressants targeting serotonin and noradrenaline may have some specific actions on emotion and reward processing which could be used to improve tailoring of treatment or to understand the effects of dual-reuptake inhibition. Specifically, serotonin may be particularly important in alleviating distress symptoms, while noradrenaline may be especially relevant to anhedonia. The data reviewed here also suggest that noradrenergic-based treatments may have earlier effects on emotional memory that those which affect serotonin.
Resumo:
Rationale: Animal studies indicate that dopamine pathways in the ventral striatum code for the motivational salience of both rewarding and aversive stimuli, but evidence for this mechanism in humans is less established. We have developed a functional magnetic resonance imaging (fMRI) model which permits examination of the neural processing of both rewarding and aversive stimuli. Objectives: The aim of the study was to determine the effect of the dopamine receptor antagonist, sulpiride, on the neural processing of rewarding and aversive stimuli in healthy volunteers. Methods: We studied 30 healthy participants who were randomly allocated to receive a single dose of sulpiride (400 mg) or placebo, in a double-blind, parallel-group design. We used fMRI to measure the neural response to rewarding (taste or sight of chocolate) and aversive stimuli (sight of mouldy strawberries or unpleasant strawberry taste) 4 h after drug treatment. Results: Relative to placebo, sulpiride reduced blood oxygenation level-dependent responses to chocolate stimuli in the striatum (ventral striatum) and anterior cingulate cortex. Sulpiride also reduced lateral orbitofrontal cortex and insula activations to the taste and sight of the aversive condition. Conclusions: These results suggest that acute dopamine receptor blockade modulates mesolimbic and mesocortical neural activations in response to both rewarding and aversive stimuli in healthy volunteers. This effect may be relevant to the effects of dopamine receptor antagonists in the treatment of psychosis and may also have implications for the possible antidepressant properties of sulpiride.
Resumo:
The neuropeptide substance P and its receptor NK1 have been implicated in emotion, anxiety and stress in preclinical studies. However, the role of NK1 receptors in human brain function is less clear and there have been inconsistent reports of the value of NK1 receptor antagonists in the treatment of clinical depression. The present study therefore aimed to investigate effects of NK1 antagonism on the neural processing of emotional information in healthy volunteers. Twenty-four participants were randomized to receive a single dose of aprepitant (125 mg) or placebo. Approximately 4 h later, neural responses during facial expression processing and an emotional counting Stroop word task were assessed using fMRI. Mood and subjective experience were also measured using self-report scales. As expected a single dose of aprepitant did not affect mood and subjective state in the healthy volunteers. However, NK1 antagonism increased responses specifically during the presentation of happy facial expressions in both the rostral anterior cingulate and the right amygdala. In the emotional counting Stroop task the aprepitant group had increased activation in both the medial orbitofrontal cortex and the precuneus cortex to positive vs. neutral words. These results suggest consistent effects of NK1 antagonism on neural responses to positive affective information in two different paradigms. Such findings confirm animal studies which support a role for NK1 receptors in emotion. Such an approach may be useful in understanding the effects of novel drug treatments prior to full-scale clinical trials.
Resumo:
Despite the fact that physical health and cognitive abilities decline with aging, the ability to regulate emotion remains stable and in some aspects improves across the adult life span. Older adults also show a positivity effect in their attention and memory, with diminished processing of negative stimuli relative to positive stimuli compared with younger adults. The current paper reviews functional magnetic resonance imaging studies investigating age-related differences in emotional processing and discusses how this evidence relates to two opposing theoretical accounts of older adults’ positivity effect. The aging-brain model [Cacioppo et al. in: Social Neuroscience: Toward Understanding the Underpinnings of the Social Mind. New York, Oxford University Press, 2011] proposes that older adults’ positivity effect is a consequence of age-related decline in the amygdala, whereas the cognitive control hypothesis [Kryla-Lighthall and Mather in: Handbook of Theories of Aging, ed 2. New York, Springer, 2009; Mather and Carstensen: Trends Cogn Sci 2005;9:496–502; Mather and Knight: Psychol Aging 2005;20:554–570] argues that the positivity effect is a result of older adults’ greater focus on regulating emotion. Based on evidence for structural and functional preservation of the amygdala in older adults and findings that older adults show greater prefrontal cortex activity than younger adults while engaging in emotion-processing tasks, we argue that the cognitive control hypothesis is a more likely explanation for older adults’ positivity effect than the aging-brain model.
Resumo:
Past studies have revealed that encountering negative events interferes with cognitive processing of subsequent stimuli. The present study investigates whether negative events affect semantic and perceptual processing differently. Presentation of negative pictures produced slower reaction times than neutral or positive pictures in tasks that require semantic processing, such as natural or man-made judgments about drawings of objects, commonness judgments about objects, and categorical judgments about pairs of words. In contrast, negative picture presentation did not slow down judgments in subsequent perceptual processing (e.g., color judgments about words, size judgments about objects). The subjective arousal level of negative pictures did not modulate the interference effects on semantic or perceptual processing. These findings indicate that encountering negative emotional events interferes with semantic processing of subsequent stimuli more strongly than perceptual processing, and that not all types of subsequent cognitive processing are impaired by negative events.
Resumo:
We report three eye-movement experiments and an antecedent choice task investigating the interpretation of reflexives in different syntactic contexts. This included contexts in which the reflexive and a local antecedent were coarguments of the same verbal predicate (John heard that the soldier had injured himself), and also so-called picture noun phrases, either with a possessor (John heard about the soldier’s picture of himself) or without (John heard that the soldier had a picture of himself). While results from the antecedent choice task indicated that comprehenders would choose a nonlocal antecedent (‘John’ above) for reflexives in either type of picture noun phrase, the eye-movement experiments suggested that participants preferred to initially interpret the reflexive in each context as referring to the local antecedent (‘the soldier’), as indexed by longer reading times when it mismatched in gender with the reflexive. We also observed a difference in the time-course of this effect. While it was observed during first-pass processing at the reflexive for coargument reflexives and those in picture noun phrases with a possessor, it was comparatively delayed for reflexives in possessorless picture noun phrases. These results suggest that locality constraints are more strongly weighted cues to retrieval than gender agreement for both coargument reflexives and those inside picture noun phrases. We interpret the observed time-course differences as indexing the relative ease of accessing the local antecedent in different syntactic contexts.
Resumo:
Language processing plays a crucial role in language development, providing the ability to assign structural representations to input strings (e.g., Fodor, 1998). In this paper we aim at contributing to the study of children's processing routines, examining the operations underlying the auditory processing of relative clauses in children compared to adults. English-speaking children (6–8;11) and adults participated in the study, which employed a self-paced listening task with a final comprehension question. The aim was to determine (i) the role of number agreement in object relative clauses in which the subject and object NPs differ in terms of number properties, and (ii) the role of verb morphology (active vs. passive) in subject relative clauses. Even though children's off-line accuracy was not always comparable to that of adults, analyses of reaction times results support the view that children have the same structural processing reflexes observed in adults.
Resumo:
According to dual-system accounts of English past-tense processing, regular forms are decomposed into their stem and affix (played=play+ed) based on an implicit linguistic rule, whereas irregular forms (kept) are retrieved directly from the mental lexicon. In second language (L2) processing research, it has been suggested that L2 learners do not have rule-based decomposing abilities, so they process regular past-tense forms similarly to irregular ones (Silva & Clahsen 2008), without applying the morphological rule. The present study investigates morphological processing of regular and irregular verbs in Greek-English L2 learners and native English speakers. In a masked-priming experiment with regular and irregular prime-target verb pairs (playedplay/kept-keep), native speakers showed priming effects for regular pairs, compared to unrelated pairs, indicating decomposition; conversely, L2 learners showed inhibitory effects. At the same time, both groups revealed priming effects for irregular pairs. We discuss these findings in the light of available theories on L2 morphological processing.
Resumo:
Facial expression recognition was investigated in 20 males with high functioning autism (HFA) or Asperger syndrome (AS), compared to typically developing individuals matched for chronological age (TD CA group) and verbal and non-verbal ability (TD V/NV group). This was the first study to employ a visual search, “face in the crowd” paradigm with a HFA/AS group, which explored responses to numerous facial expressions using real-face stimuli. Results showed slower response times for processing fear, anger and sad expressions in the HFA/AS group, relative to the TD CA group, but not the TD V/NV group. Reponses to happy, disgust and surprise expressions showed no group differences. Results are discussed with reference to the amygdala theory of autism.
Resumo:
The aim of this study was to investigate the effects of numerous milk compositional factors on milk coagulation properties using Partial Least Squares (PLS). Milk from herds of Jersey and Holstein- Friesian cattle was collected across the year and blended (n=55), to maximise variation in composition and coagulation. The milk was analysed for casein, protein, fat, titratable acidity, lactose, Ca2+, urea content, micelles size, fat globule size, somatic cell count and pH. Milk coagulation properties were defined as coagulation time, curd firmness and curd firmness rate measured by a controlled strain rheometer. The models derived from PLS had higher predictive power than previous models demonstrating the value of measuring more milk components. In addition to the well-established relationships with casein and protein levels, CMS and fat globule size were found to have as strong impact on all of the three models. The study also found a positive impact of fat on milk coagulation properties and a strong relationship between lactose and curd firmness, and urea and curd firmness rate, all of which warrant further investigation due to current lack of knowledge of the underlying mechanism. These findings demonstrate the importance of using a wider range of milk compositional variables for the prediction of the milk coagulation properties, and hence as indicators of milk suitability for cheese making.