254 resultados para Infrared intelligent spectroradiometer


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The potential of visible-near infrared spectra, obtained using a light backscatter sensor, in conjunction with chemometrics, to predict curd moisture and whey fat content in a cheese vat was examined. A three-factor (renneting temperature, calcium chloride, cutting time), central composite design was carried out in triplicate. Spectra (300–1,100 nm) of the product in the cheese vat were captured during syneresis using a prototype light backscatter sensor. Stirring followed upon cutting the gel, and samples of curd and whey were removed at 10 min intervals and analyzed for curd moisture and whey fat content. Spectral data were used to develop models for predicting curd moisture and whey fat contents using partial least squares regression. Subjecting the spectral data set to Jack-knifing improved the accuracy of the models. The whey fat models (R = 0.91, 0.95) and curd moisture model (R = 0.86, 0.89) provided good and approximate predictions, respectively. Visible-near infrared spectroscopy was found to have potential for the prediction of important syneresis indices in stirred cheese vats.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The potential of near infrared spectroscopy in conjunction with partial least squares regression to predict Miscanthus xgiganteus and short rotation coppice willow quality indices was examined. Moisture, calorific value, ash and carbon content were predicted with a root mean square error of cross validation of 0.90% (R2 = 0.99), 0.13 MJ/kg (R2 = 0.99), 0.42% (R2 = 0.58), and 0.57% (R2 = 0.88), respectively. The moisture and calorific value prediction models had excellent accuracy while the carbon and ash models were fair and poor, respectively. The results indicate that near infrared spectroscopy has the potential to predict quality indices of dedicated energy crops, however the models must be further validated on a wider range of samples prior to implementation. The utilization of such models would assist in the optimal use of the feedstock based on its biomass properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this study was to investigate the potential application of mid-infrared spectroscopy for determination of selected sensory attributes in a range of experimentally manufactured processed cheese samples. This study also evaluates mid-infrared spectroscopy against other recently proposed techniques for predicting sensory texture attributes. Processed cheeses (n = 32) of varying compositions were manufactured on a pilot scale. After 2 and 4 wk of storage at 4 degrees C, mid-infrared spectra ( 640 to 4,000 cm(-1)) were recorded and samples were scored on a scale of 0 to 100 for 9 attributes using descriptive sensory analysis. Models were developed by partial least squares regression using raw and pretreated spectra. The mouth-coating and mass-forming models were improved by using a reduced spectral range ( 930 to 1,767 cm(-1)). The remaining attributes were most successfully modeled using a combined range ( 930 to 1,767 cm(-1) and 2,839 to 4,000 cm(-1)). The root mean square errors of cross-validation for the models were 7.4(firmness; range 65.3), 4.6 ( rubbery; range 41.7), 7.1 ( creamy; range 60.9), 5.1(chewy; range 43.3), 5.2(mouth-coating; range 37.4), 5.3 (fragmentable; range 51.0), 7.4 ( melting; range 69.3), and 3.1 (mass-forming; range 23.6). These models had a good practical utility. Model accuracy ranged from approximate quantitative predictions to excellent predictions ( range error ratio = 9.6). In general, the models compared favorably with previously reported instrumental texture models and near-infrared models, although the creamy, chewy, and melting models were slightly weaker than the previously reported near-infrared models. We concluded that mid-infrared spectroscopy could be successfully used for the nondestructive and objective assessment of processed cheese sensory quality..

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this study was to determine the potential of mid-infrared spectroscopy coupled with multidimensional statistical analysis for the prediction of processed cheese instrumental texture and meltability attributes. Processed cheeses (n = 32) of varying composition were manufactured in a pilot plant. Following two and four weeks storage at 4 degrees C samples were analysed using texture profile analysis, two meltability tests (computer vision, Olson and Price) and mid-infrared spectroscopy (4000-640 cm(-1)). Partial least squares regression was used to develop predictive models for all measured attributes. Five attributes were successfully modelled with varying degrees of accuracy. The computer vision meltability model allowed for discrimination between high and low melt values (R-2 = 0.64). The hardness and springiness models gave approximate quantitative results (R-2 = 0.77) and the cohesiveness (R-2 = 0.81) and Olson and Price meltability (R-2 = 0.88) models gave good prediction results. (c) 2006 Elsevier Ltd. All rights reserved..

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The potential of a fibre optic sensor, detecting light backscatter in a cheese vat during coagulation and syneresis, to predict curd moisture, fat loses and curd yield was examined. Temperature, cutting time and calcium levels were varied to assess the strength of the predictions over a range of processing conditions. Equations were developed using a combination of independent variables, milk compositional and light backscatter parameters. Fat losses, curd yield and curd moisture content were predicted with a standard error of prediction (SEP) of +/- 2.65 g 100 g(-1) (R-2 = 0.93), +/- 0.95% (R-2 = 0.90) and +/- 1.43% (R-2 = 0.94), respectively. These results were used to develop a model for predicting curd moisture as a function of time during syneresis (SEP = +/- 1.72%; R-2 = 0.95). By monitoring coagulation and syneresis, this sensor technology could be employed to control curd moisture content, thereby improving process control during cheese manufacture. (c) 2007 Elsevier Ltd. All rights reserved..

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this study was to determine the potential of mid-infrared spectroscopy in conjunction with partial least squares (PLS) regression to predict various quality parameters in cheddar cheese. Cheddar cheeses (n = 24) were manufactured and stored at 8 degrees C for 12 mo. Mid-infrared spectra (640 to 4000/cm) were recorded after 4, 6, 9, and 12 mo storage. At 4, 6, and 9 mo, the water-soluble nitrogen (WSN) content of the samples was determined and the samples were also evaluated for 11 sensory texture attributes using descriptive sensory analysis. The mid-infrared spectra were subjected to a number of pretreatments, and predictive models were developed for all parameters. Age was predicted using scatter-corrected, 1st derivative spectra with a root mean square error of cross-validation (RMSECV) of 1 mo, while WSN was predicted using 1st derivative spectra (RMSECV = 2.6%). The sensory texture attributes most successfully predicted were rubbery, crumbly, chewy, and massforming. These attributes were modeled using 2nd derivative spectra and had, corresponding RMSECV values in the range of 2.5 to 4.2 on a scale of 0 to 100. It was concluded that mid-infrared spectroscopy has the potential to predict age, WSN, and several sensory texture attributes of cheddar cheese..

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reviews the current state of development of both near-infrared (NIR) and mid-infrared (MIR) spectroscopic techniques for process monitoring, quality control, and authenticity determination in cheese processing. Infrared spectroscopy has been identified as an ideal process analytical technology tool, and recent publications have demonstrated the potential of both NIR and MIR spectroscopy, coupled with chemometric techniques, for monitoring coagulation, syneresis, and ripening as well as determination of authenticity, composition, sensory, and rheological parameters. Recent research is reviewed and compared on the basis of experimental design, spectroscopic and chemometric methods employed to assess the potential of infrared spectroscopy as a technology for improving process control and quality in cheese manufacture. Emerging research areas for these technologies, such as cheese authenticity and food chain traceability, are also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The A-Train constellation of satellites provides a new capability to measure vertical cloud profiles that leads to more detailed information on ice-cloud microphysical properties than has been possible up to now. A variational radar–lidar ice-cloud retrieval algorithm (VarCloud) takes advantage of the complementary nature of the CloudSat radar and Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) lidar to provide a seamless retrieval of ice water content, effective radius, and extinction coefficient from the thinnest cirrus (seen only by the lidar) to the thickest ice cloud (penetrated only by the radar). In this paper, several versions of the VarCloud retrieval are compared with the CloudSat standard ice-only retrieval of ice water content, two empirical formulas that derive ice water content from radar reflectivity and temperature, and retrievals of vertically integrated properties from the Moderate Resolution Imaging Spectroradiometer (MODIS) radiometer. The retrieved variables typically agree to within a factor of 2, on average, and most of the differences can be explained by the different microphysical assumptions. For example, the ice water content comparison illustrates the sensitivity of the retrievals to assumed ice particle shape. If ice particles are modeled as oblate spheroids rather than spheres for radar scattering then the retrieved ice water content is reduced by on average 50% in clouds with a reflectivity factor larger than 0 dBZ. VarCloud retrieves optical depths that are on average a factor-of-2 lower than those from MODIS, which can be explained by the different assumptions on particle mass and area; if VarCloud mimics the MODIS assumptions then better agreement is found in effective radius and optical depth is overestimated. MODIS predicts the mean vertically integrated ice water content to be around a factor-of-3 lower than that from VarCloud for the same retrievals, however, because the MODIS algorithm assumes that its retrieved effective radius (which is mostly representative of cloud top) is constant throughout the depth of the cloud. These comparisons highlight the need to refine microphysical assumptions in all retrieval algorithms and also for future studies to compare not only the mean values but also the full probability density function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Building Management Systems (BMS) are widely adopted in modern buildings around the world in order to provide high-quality building services, and reduce the running cost of the building. However, most BMS are functionality-oriented and do not consider user personalization. The aim of this research is to capture and represent building management rules using organizational semiotics methods. We implement Semantic Analysis, which determines semantic units in building management and their relationship patterns of behaviour, and Norm Analysis, which extracts and specifies the norms that establish how and when these management actions occur. Finally, we propose a multi-agent framework for norm based building management. This framework contributes to the design domain of intelligent building management system by defining a set of behaviour patterns, and the norms that govern the real-time behaviour in a building.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the important goals of the intelligent buildings especially in commercial applications is not only to minimize the energy consumption but also to enhance the occupant’s comfort. However, most of current development in the intelligent buildings focuses on an implementation of the automatic building control systems that can support energy efficiency approach. The consideration of occupants’ preferences is not adequate. To improve occupant’s wellbeing and energy efficiency in intelligent environments, we develop four types of agent combined together to form a multi-agent system to control the intelligent buildings. Users’ preferential conflicts are discussed. Furthermore, a negotiation mechanism for conflict resolution, has been proposed in order to reach an agreement, and has been represented in syntax directed translation schemes for future implementation and testing. Keywords: conflict resolution, intelligent buildings, multi-agent systems (MAS), negotiation strategy, syntax directed translation schemes (SDTS).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article presents and assesses an algorithm that constructs 3D distributions of cloud from passive satellite imagery and collocated 2D nadir profiles of cloud properties inferred synergistically from lidar, cloud radar and imager data. It effectively widens the active–passive retrieved cross-section (RXS) of cloud properties, thereby enabling computation of radiative fluxes and radiances that can be compared with measured values in an attempt to perform radiative closure experiments that aim to assess the RXS. For this introductory study, A-train data were used to verify the scene-construction algorithm and only 1D radiative transfer calculations were performed. The construction algorithm fills off-RXS recipient pixels by computing sums of squared differences (a cost function F) between their spectral radiances and those of potential donor pixels/columns on the RXS. Of the RXS pixels with F lower than a certain value, the one with the smallest Euclidean distance to the recipient pixel is designated as the donor, and its retrieved cloud properties and other attributes such as 1D radiative heating rates are consigned to the recipient. It is shown that both the RXS itself and Moderate Resolution Imaging Spectroradiometer (MODIS) imagery can be reconstructed extremely well using just visible and thermal infrared channels. Suitable donors usually lie within 10 km of the recipient. RXSs and their associated radiative heating profiles are reconstructed best for extensive planar clouds and less reliably for broken convective clouds. Domain-average 1D broadband radiative fluxes at the top of theatmosphere(TOA)for (21 km)2 domains constructed from MODIS, CloudSat andCloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) data agree well with coincidental values derived from Clouds and the Earth’s Radiant Energy System (CERES) radiances: differences betweenmodelled and measured reflected shortwave fluxes are within±10Wm−2 for∼35% of the several hundred domains constructed for eight orbits. Correspondingly, for outgoing longwave radiation∼65% are within ±10Wm−2.