201 resultados para Healthy foods
Resumo:
BACKGROUND: The cannabinoid cannabinoid type 1 (CB1) neutral antagonist tetrahydrocannabivarin (THCv) has been suggested as a possible treatment for obesity, but without the depressogenic side-effects of inverse antagonists such as Rimonabant. However, how THCv might affect the resting state functional connectivity of the human brain is as yet unknown. METHOD: We examined the effects of a single 10mg oral dose of THCv and placebo in 20 healthy volunteers in a randomized, within-subject, double-blind design. Using resting state functional magnetic resonance imaging and seed-based connectivity analyses, we selected the amygdala, insula, orbitofrontal cortex, and dorsal medial prefrontal cortex (dmPFC) as regions of interest. Mood and subjective experience were also measured before and after drug administration using self-report scales. RESULTS: Our results revealed, as expected, no significant differences in the subjective experience with a single dose of THCv. However, we found reduced resting state functional connectivity between the amygdala seed region and the default mode network and increased resting state functional connectivity between the amygdala seed region and the dorsal anterior cingulate cortex and between the dmPFC seed region and the inferior frontal gyrus/medial frontal gyrus. We also found a positive correlation under placebo for the amygdala-precuneus connectivity with the body mass index, although this correlation was not apparent under THCv. CONCLUSION: Our findings are the first to show that treatment with the CB1 neutral antagonist THCv decreases resting state functional connectivity in the default mode network and increases connectivity in the cognitive control network and dorsal visual stream network. This effect profile suggests possible therapeutic activity of THCv for obesity, where functional connectivity has been found to be altered in these regions.
Resumo:
Obesity prevalence is increasing. The management of this condition requires a detailed analysis of the global risk factors in order to develop personalised advice. This study is aimed to identify current dietary patterns and habits in Spanish population interested in personalised nutrition and investigate associations with weight status. Self-reported dietary and anthropometrical data from the Spanish participants in the Food4Me study, were used in a multidimensional exploratory analysis to define specific dietary profiles. Two opposing factors were obtained according to food groups’ intake: Factor 1 characterised by a more frequent consumption of traditionally considered unhealthy foods; and Factor 2, where the consumption of “Mediterranean diet” foods was prevalent. Factor 1 showed a direct relationship with BMI (β = 0.226; r2 = 0.259; p < 0.001), while the association with Factor 2 was inverse (β = −0.037; r2 = 0.230; p = 0.348). A total of four categories were defined (Prudent, Healthy, Western, and Compensatory) through classification of the sample in higher or lower adherence to each factor and combining the possibilities. Western and Compensatory dietary patterns, which were characterized by high-density foods consumption, showed positive associations with overweight prevalence. Further analysis showed that prevention of overweight must focus on limiting the intake of known deleterious foods rather than exclusively enhance healthy products.
Resumo:
Rising greenhouse gas emissions (GHGEs) have implications for health and up to 30 % of emissions globally are thought to arise from agriculture. Synergies exist between diets low in GHGEs and health however some foods have the opposite relationship, such as sugar production being a relatively low source of GHGEs. In order to address this and to further characterise a healthy sustainable diet, we model the effect on UK non-communicable disease mortality and GHGEs of internalising the social cost of carbon into the price of food alongside a 20 % tax on sugar sweetened beverages (SSBs). Developing previously published work, we simulate four tax scenarios: (A) a GHGEs tax of £2.86/tonne of CO2 equivalents (tCO2e)/100 g product on all products with emissions greater than the mean across all food groups (0.36 kgCO2e/100 g); (B) scenario A but with subsidies on foods with emissions lower than 0.36 kgCO2e/100 g such that the effect is revenue neutral; (C) scenario A but with a 20 % sales tax on SSBs; (D) scenario B but with a 20 % sales tax on SSBs. An almost ideal demand system is used to estimate price elasticities and a comparative risk assessment model is used to estimate changes to non-communicable disease mortality. We estimate that scenario A would lead to 300 deaths delayed or averted, 18,900 ktCO2e fewer GHGEs, and £3.0 billion tax revenue; scenario B, 90 deaths delayed or averted and 17,100 ktCO2e fewer GHGEs; scenario C, 1,200 deaths delayed or averted, 18,500 ktCO2e fewer GHGEs, and £3.4 billion revenue; and scenario D, 2,000 deaths delayed or averted and 16,500 ktCO2e fewer GHGEs. Deaths averted are mainly due to increased fibre and reduced fat consumption; a SSB tax reduces SSB and sugar consumption. Incorporating the social cost of carbon into the price of food has the potential to improve health, reduce GHGEs, and raise revenue. The simple addition of a tax on SSBs can mitigate negative health consequences arising from sugar being low in GHGEs. Further conflicts remain, including increased consumption of unhealthy foods such as cakes and nutrients such as salt.
Resumo:
There are no standardised serving/portion sizes defined for foods consumed in the European Union (EU). Typical serving sizes can deviate significantly from the 100 g/100 ml labelling specification required by the EU legislation. Where the nutritional value of a portion is specified, the portion size is determined by the manufacturers. Our objective was to investigate the potential for standardising portion sizes for specific foods, thereby ensuring complementarity across countries. We compared portion size for 156 food items measured using a food frequency questionnaire across the seven countries participating in the Food4me study. The probability of consuming a food and the frequency of consumption differed across countries for 93% and 58% of the foods, respectively. However, the individual country mean portion size differed from the average across countries in only 16% of comparisons. Thus, although dietary choices vary markedly across countries, there is much less variation in portion sizes. Our results highlight the potential for standardisation of portion sizes on nutrition labels in the EU